α-Toxin is a mediator of Staphylococcus aureus–induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling

Author:

Bantel Heike12,Sinha Bhanu3,Domschke Wolfram2,Peters Georg3,Schulze-Osthoff Klaus1,Jänicke Reiner U.1

Affiliation:

1. Department of Immunology and Cell Biology, University of Münster, 48149 Münster, Germany

2. Department of Internal Medicine B, University of Münster, 48149 Münster, Germany

3. Institute of Medical Microbiology, University of Münster, 48149 Münster, Germany

Abstract

Infections with Staphylococcus aureus, a common inducer of septic and toxic shock, often result in tissue damage and death of various cell types. Although S. aureus was suggested to induce apoptosis, the underlying signal transduction pathways remained elusive. We show that caspase activation and DNA fragmentation were induced not only when Jurkat T cells were infected with intact bacteria, but also after treatment with supernatants of various S. aureus strains. We also demonstrate that S. aureus–induced cell death and caspase activation were mediated by α-toxin, a major cytotoxin of S. aureus, since both events were abrogated by two different anti–α-toxin antibodies and could not be induced with supernatants of an α-toxin–deficient S. aureus strain. Furthermore, α-toxin–induced caspase activation in CD95-resistant Jurkat sublines lacking CD95, Fas-activated death domain, or caspase-8 but not in cells stably expressing the antiapoptotic protein Bcl-2. Together with our finding that α-toxin induces cytochrome c release in intact cells and, interestingly, also from isolated mitochondria in a Bcl-2-controlled manner, our results demonstrate that S. aureus α-toxin triggers caspase activation via the intrinsic death pathway independently of death receptors. Hence, our findings clearly define a signaling pathway used in S. aureus–induced cytotoxicity and may provide a molecular rationale for future therapeutic interventions in bacterial infections.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 165 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3