ULTRASTRUCTURAL BASIS OF BIOCHEMICAL EFFECTS IN A SERIES OF LETHAL ALLELES IN THE MOUSE

Author:

Trigg Monica J.1,Gluecksohn-Waelsch Salome1

Affiliation:

1. From the Department of Genetics, Albert Einstein College of Medicine, The Bronx, New York 10461

Abstract

The fine structure of newborn and fetal mouse liver and of newborn kidney cells homozygous for any of three albino alleles known to have multiple biochemical effects was investigated. Electron microscope studies of mutant cells revealed dilation and vesiculation of the rough endoplasmic reticulum in parenchymal liver cells, as well as dilation and other anomalies of the Golgi apparatus. These abnormalities were observed in all newborn mutants but never in littermate controls. Although they were most pronounced in liver parenchymal cells, they were found also to a lesser degree in kidney cells, but they were absent altogether in other cell types of the mutant newborn. Homozygous fetuses showed similar anomalies in the liver at 19 days of gestational age. In one of the alleles studied, mutant liver parenchymal cells were found to be abnormal as early as the 18th day of gestation. There appears to be a striking parallelism between the biochemical defects and those of the cellular membranes in homozygous mutant newborn and fetuses. Although the specific nature of the mutational effect on membrane structure remains unknown, the results are compatible with the assumption that a mutationally caused defect in a membrane component interferes with a mechanism vital in the integration of morphological and biochemical differentiation.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NTBC and Correction of Renal Dysfunction;Advances in Experimental Medicine and Biology;2017

2. Hepatorenal Tyrosinemia;Genetic Diseases of the Kidney;2009

3. Morphogenetic competence of HNF4α-deficient mouse hepatic cells;Journal of Hepatology;2008-09

4. Animal Models of Tyrosinemia;The Journal of Nutrition;2007-06-01

5. Tyrosinaemia type I and apoptosis of hepatocytes and renal tubular cells;Journal of Inherited Metabolic Disease;2002-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3