PDGF ligand and receptor gene expression during repair of arterial injury.

Author:

Majesky M W1,Reidy M A1,Bowen-Pope D F1,Hart C E1,Wilcox J N1,Schwartz S M1

Affiliation:

1. Department of Pathology, University of Washington, Seattle 98195.

Abstract

Smooth muscle cells (SMC) in rat carotid artery leave the quiescent state and proliferate after balloon catheter injury, but the signals for mitogenesis are not known. In this study, the possibility that cells within damaged arteries produce a growth factor that could act locally to stimulate SMC replication and repair was examined. We found that the genes for PDGF-A and -B (ligand) and PDGF receptor (alpha and beta subunits) were expressed in normal and injured carotid arteries and were independently regulated during repair of carotid injury. Two phases of PDGF ligand and receptor gene expression were observed: (a) In the early stage, a large decrease in PDGF beta-receptor mRNA levels preceded 10- to 12-fold increases in PDGF-A transcript abundance in the first 6 h after wounding. No change in PDGF alpha-receptor or PDGF-B gene expression was found at these times. (b) In the chronic phase, 2 wk after injury, neointimal tissue had lower levels of PDGF alpha-receptor mRNA (threefold) and higher levels of PDGF beta-receptor mRNA (three- to fivefold) than did restored media. Moreover, in situ hybridization studies identified a subpopulation of neointimal SMC localized at or near the luminal surface with a different pattern of gene expression than the underlying carotid SMC. Luminal SMC were strongly positive for PDGF-A and PDGF beta-receptor transcripts, while showing little or no hybridization for PDGF-B or PDGF alpha-receptor. Immunohistochemical studies showed strongly positive staining for PDGF-A in SMC along the luminal surface. These data show that changes in PDGF ligand and receptor expression occur at specific times and locations in injured carotid artery and suggest that these changes may play a role in regulating arterial wound repair.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 404 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3