Evidence that proteolysis of the surface is an initial step in the mechanism of formation of sperm cell surface domains.

Author:

Phelps B M1,Koppel D E1,Primakoff P1,Myles D G1

Affiliation:

1. Department of Physiology, University of Connecticut Health Center, Farmington 06030.

Abstract

On terminally differentiated sperm cells, surface proteins are segregated into distinct surface domains that include the anterior and posterior head domains. We have analyzed the formation of the anterior and posterior head domains of guinea pig sperm in terms of both the timing of protein localization and the mechanism(s) responsible. On testicular sperm, the surface proteins PH-20, PH-30 and AH-50 were found to be present on the whole cell (PH-20) or whole head surface (PH-30, AH-50). On sperm that have completed differentiation (cauda epididymal sperm), PH-20 and PH-30 proteins were restricted to the posterior head domain and AH-50 was restricted to the anterior head domain. Thus these proteins become restricted in their distribution late in sperm differentiation, after sperm leave the testis. We discovered that the differentiation process that localizes these proteins can be mimicked in vitro by treating testicular sperm with trypsin. After testicular sperm were treated with 20 micrograms/ml trypsin for 5 min at room temperature, PH-20, PH-30, and AH-50 were found localized to the same domains to which they are restricted during in vivo differentiation. The in vitro trypsin-induced localization of PH-20 to the posterior head mimicked the in vivo differentiation process quantitatively as well as qualitatively. The quantitative analysis showed the process of PH-20 localization involves the migration of surface PH-20 from other regions to the posterior head domain. Immunoprecipitation experiments confirmed that there is protease action in vivo on the sperm surface during the late stages of sperm differentiation. Both the PH-20 and PH-30 proteins were shown to be proteolytically cleaved late in sperm differentiation. These findings strongly implicate proteolysis of surface molecules as an initial step in the mechanism of formation of sperm head surface domains.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3