Arf1-PI4KIIIβ positive vesicles regulate PI(3)P signaling to facilitate lysosomal tubule fission

Author:

Boutry Maxime1ORCID,DiGiovanni Laura F.12ORCID,Demers Nicholas12ORCID,Fountain Aaron34ORCID,Mamand Sami345ORCID,Botelho Roberto J.34ORCID,Kim Peter K.126ORCID

Affiliation:

1. Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning 1 , Toronto, Ontario, Canada

2. University of Toronto 2 Department of Biochemistry, , Toronto, Ontario, Canada

3. Toronto Metropolitan University 3 Department of Chemistry and Biology, , Toronto, Ontario, Canada

4. Graduate Program in Molecular Science, Toronto Metropolitan University 4 , Toronto, Ontario, Canada

5. Polytechnic Research Center, Erbil Polytechnic University 5 , Erbil, Kurdistan, Iraq

6. Gwangju Institute of Science and Technology 6 Department of Biomedical Science and Engineering, , Gwangju, South Korea

Abstract

Formation and fission of tubules from autolysosomes, endolysosomes, or phagolysosomes are required for lysosome reformation. However, the mechanisms governing these processes in these different lysosomal organelles are poorly understood. Thus, the role of phosphatidylinositol-4-phosphate (PI(4)P) is unclear as it was shown to promote the formation of tubules from phagolysosomes but was proposed to inhibit tubule formation on autolysosomes because the loss of PI4KIIIβ causes extensive lysosomal tubulation. Using super-resolution live-cell imaging, we show that Arf1-PI4KIIIβ positive vesicles are recruited to tubule fission sites from autolysosomes, endolysosomes, and phagolysosomes. Moreover, we show that PI(4)P is required to form autolysosomal tubules and that increased lysosomal tubulation caused by loss of PI4KIIIβ represents impaired tubule fission. At the site of fission, we propose that Arf1-PI4KIIIβ positive vesicles mediate a PI(3)P signal on lysosomes in a process requiring the lipid transfer protein SEC14L2. Our findings indicate that Arf1-PI4KIIIβ positive vesicles and their regulation of PI(3)P are critical components of the lysosomal tubule fission machinery.

Funder

Canadian Institutes of Health Research

Canada Research Chairs

Hospital for Sick Children

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3