A force-sensitive mutation reveals a non-canonical role for dynein in anaphase progression

Author:

Salvador-Garcia David1ORCID,Jin Li1ORCID,Hensley Andrew2ORCID,Gölcük Mert3ORCID,Gallaud Emmanuel4ORCID,Chaaban Sami5ORCID,Port Fillip1ORCID,Vagnoni Alessio1ORCID,Planelles-Herrero Vicente José1ORCID,McClintock Mark A.1ORCID,Derivery Emmanuel1ORCID,Carter Andrew P.5ORCID,Giet Régis4ORCID,Gür Mert36ORCID,Yildiz Ahmet27ORCID,Bullock Simon L.1ORCID

Affiliation:

1. Medical Research Council Laboratory of Molecular Biology 1 Cell Biology Division, , Cambridge, UK

2. University of California, Berkeley 2 Department of Physics, , Berkeley, CA, USA

3. School of Mechanical Engineering, Istanbul Technical University 3 , Istanbul, Turkey

4. Institut de Génétique et Développement de Rennes, Université de Rennes 4 , Rennes, France

5. Medical Research Council Laboratory of Molecular Biology 5 Structural Studies Division, , Cambridge, UK

6. University of Pittsburgh 6 Department of Computational and Systems Biology, , Pittsburgh, PA, USA

7. University of California, Berkeley 7 Department of Molecular and Cellular Biology, , Berkeley, CA, USA

Abstract

The diverse roles of the dynein motor in shaping microtubule networks and cargo transport complicate in vivo analysis of its functions significantly. To address this issue, we have generated a series of missense mutations in Drosophila Dynein heavy chain. We show that mutations associated with human neurological disease cause a range of defects, including impaired cargo trafficking in neurons. We also describe a novel microtubule-binding domain mutation that specifically blocks the metaphase–anaphase transition during mitosis in the embryo. This effect is independent from dynein’s canonical role in silencing the spindle assembly checkpoint. Optical trapping of purified dynein complexes reveals that this mutation only compromises motor performance under load, a finding rationalized by the results of all-atom molecular dynamics simulations. We propose that dynein has a novel function in anaphase progression that depends on it operating in a specific load regime. More broadly, our work illustrates how in vivo functions of motors can be dissected by manipulating their mechanical properties.

Funder

Medical Research Council

UK Research and Innovation

National Centre for the Replacement, Refinement and Reduction of Animals in Research

Marie Curie IntraEuropean Fellowship

National Institutes of Health

National Science Foundation

Fondation pour la Recherche Médicale

European Molecular Biology Organization

Partnership for Advanced Computing in Europe

Scientific and Technological Research Council of Türkiye

Biotechnology and Biological Sciences Research Council

MRC Laboratory of Molecular Biology

Publisher

Rockefeller University Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3