Intercompartmental transport in the Golgi complex is a dissociative process: facile transfer of membrane protein between two Golgi populations.

Author:

Rothman J E,Miller R L,Urbani L J

Abstract

The transfer of the vesicular stomatitis virus-encoded glycoprotein (G protein) between Golgi populations in fused cells (Rothman, J. E., L. J. Urbani, and R. Brands. 1984. J. Cell Biol. 99:248-259) is exploited here to study and to help define the compartmental organization of the Golgi stack and to characterize the mechanism of intercompartmental transport. We find that G protein that has just received its peripheral N-acetylglucosamine in the Golgi complex of one cell is efficiently transferred to the Golgi complex of another cell to receive galactose (Gal). Remarkably, this transport occurs at the same rate between these two compartments whether they are present in the same or different Golgi populations. Therefore, a dissociative (presumably vesicular) transport step moves G protein from one part of the Golgi in which N-acetylglucosamine is added to another in which Gal is added. Minutes later, upon receiving Gal, the same G protein molecules are very poorly transferred to an exogenous Golgi population after cell fusion. Therefore, once this intercompartmental transfer has already taken place (before fusion), it cannot take place again (after fusion); i.e., transport across the compartment boundary in the Golgi complex that separates the sites of N-acetylglucosamine and Gal incorporation is a vectorial process. We conclude that transfers between Golgi cisternae occur by a stochastic process in which transport vesicles budding from cisternae dissociate, can diffuse away, and then attach to and fuse with the appropriate target cisterna residing in the same or in a different stack, based on a biochemical pairing after a random encounter. Under these circumstances, a transported protein would almost always randomize among stacks with each intercisternal transfer; it would not progress systematically through a single stack. Altogether, our studies define three sequential compartments in the Golgi stack.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 150 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Golgi Apparatus with the Historical Point of View;Bezmialem Science;2021-06-25

2. Models of Intracellular Transport: Pros and Cons;Frontiers in Cell and Developmental Biology;2019-08-07

3. Role of Intracellular Transport in the Centriole-Dependent Formation of Golgi Ribbon;Results and Problems in Cell Differentiation;2019

4. Bibliography;Plant Cell Biology;2019

5. Intra-Golgi Transport: Escalator or Bucket Brigade?;Annual Plant Reviews online;2018-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3