Occludin: a novel integral membrane protein localizing at tight junctions.

Author:

Furuse M1,Hirase T1,Itoh M1,Nagafuchi A1,Yonemura S1,Tsukita S1,Tsukita S1

Affiliation:

1. Department of Information Physiology, National Institute for Physiological Sciences, Aichi, Japan.

Abstract

Recently, we found that ZO-1, a tight junction-associated protein, was concentrated in the so called isolated adherens junction fraction from the liver (Itoh, M., A. Nagafuchi, S. Yonemura, T. Kitani-Yasuda, Sa. Tsukita, and Sh. Tsukita. 1993. J. Cell Biol. 121:491-502). Using this fraction derived from chick liver as an antigen, we obtained three monoclonal antibodies specific for a approximately 65-kD protein in rats. This antigen was not extractable from plasma membranes without detergent, suggesting that it is an integral membrane protein. Immunofluorescence and immunoelectron microscopy with these mAbs showed that this approximately 65-kD membrane protein was exclusively localized at tight junctions of both epithelial and endothelial cells: at the electron microscopic level, the labels were detected directly over the points of membrane contact in tight junctions. To further clarify the nature and structure of this membrane protein, we cloned and sequenced its cDNA. We found that the cDNA encoded a 504-amino acid polypeptide with 55.9 kDa. A search of the data base identified no proteins with significant homology to this membrane protein. A most striking feature of its primary structure was revealed by a hydrophilicity plot: four putative membrane-spanning segments were included in the NH2-terminal half. This hydrophilicity plot was very similar to that of connexin, an integral membrane protein in gap junctions. These findings revealed that an integral membrane protein localizing at tight junctions is now identified, which we designated as "occludin."

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3