Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits.

Author:

Hell J W1,Westenbroek R E1,Warner C1,Ahlijanian M K1,Prystay W1,Gilbert M M1,Snutch T P1,Catterall W A1

Affiliation:

1. Department of Pharmacology, University of Washington, Seattle 98195.

Abstract

To identify and localize the protein products of genes encoding distinct L-type calcium channels in central neurons, anti-peptide antibodies specific for the class C and class D alpha 1 subunits were produced. Anti-CNC1 directed against class C immunoprecipitated 75% of the L-type channels solubilized from rat cerebral cortex and hippocampus. Anti-CND1 directed against class D immunoprecipitated only 20% of the L-type calcium channels. Immunoblotting revealed two size forms of the class C L-type alpha 1 subunit, LC1 and LC2, and two size forms of the class D L-type alpha 1 subunit, LD1 and LD2. The larger isoforms had apparent molecular masses of approximately 200-210 kD while the smaller isoforms were 180-190 kD, as estimated from electrophoresis in gels polymerized from 5% acrylamide. Immunocytochemical studies using CNC1 and CND1 antibodies revealed that the alpha 1 subunits of both L-type calcium channel subtypes are localized mainly in neuronal cell bodies and proximal dendrites. Relatively dense labeling was observed at the base of major dendrites in many neurons. Staining in more distal dendritic regions was faint or undetectable with CND1, while a more significant level of staining of distal dendrites was observed with CNC1, particularly in the dentate gyrus and the CA2 and CA3 areas of the hippocampus. Class C calcium channels were concentrated in clusters, while class D calcium channels were generally distributed in the cell surface membrane of cell bodies and proximal dendrites. Our results demonstrate multiple size forms and differential localization of two subtypes of L-type calcium channels in the cell bodies and proximal dendrites of central neurons. The differential localization and multiple size forms may allow these two channel subtypes to participate in distinct aspects of electrical signal integration and intracellular calcium signaling in neuronal cell bodies. The preferential localization of these calcium channels in cell bodies and proximal dendrites implies their involvement in regulation of calcium-dependent functions occurring in those cellular compartments such as protein phosphorylation, enzyme activity, and gene expression.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3