Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity.

Author:

Streuli C H1,Bailey N1,Bissell M J1

Affiliation:

1. Cell and Molecular Biology Division, Lawrence Berkeley Laboratory, Berkeley, California 94720.

Abstract

Functional differentiation in mammary epithelia requires specific hormones and local environmental signals. The latter are provided both by extracellular matrix and by communication with adjacent cells, their action being intricately connected in what appears to be a cascade of events leading to milk production. To distinguish between the influence of basement membrane and that of cell-cell contact in this process, we developed a novel suspension culture assay in which mammary epithelial cells were embedded inside physiological substrata. Single cells, separated from each other, were able to assimilate information from a laminin-rich basement membrane substratum and were induced to express beta-casein. In contrast, a stromal environment of collagen I was not sufficient to induce milk synthesis unless accompanied by cell-cell contact. The expression of milk proteins did not depend on morphological polarity since E-cadherin and alpha 6 integrin were distributed evenly around the surface of single cells. In medium containing 5 microM Ca2+, cell-cell interactions were impaired in small clusters and E-cadherin was not detected at the cell surface, yet many cells were still able to produce beta-casein. Within the basement membrane substratum, signal transfer appeared to be mediated through integrins since a function-blocking anti-integrin antibody severely diminished the ability of suspension-cultured cells to synthesize beta-casein. These results provide evidence for a central role of basement membrane in the induction of tissue-specific gene expression.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 598 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3