Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly.

Author:

Burridge K1,Turner C E1,Romer L H1

Affiliation:

1. Department of Cell Biology and Anatomy, University of North Carolina, Chapel Hill 27599.

Abstract

Cells in culture reveal high levels of protein tyrosine phosphorylation in their focal adhesions, the regions where cells adhere to the underlying substratum. We have examined the tyrosine phosphorylation of proteins in response to plating cells on extracellular matrix substrata. Rat embryo fibroblasts, mouse Balb/c 3T3, and NIH 3T3 cells plated on fibronectin-coated surfaces revealed elevated phosphotyrosine levels in a cluster of proteins between 115 and 130 kD. This increase in tyrosine phosphorylation was also seen when rat embryo fibroblasts were plated on laminin or vitronectin, but not on polylysine or on uncoated plastic. Integrin mediation of this effect was suggested by finding the same pattern of elevated tyrosine phosphorylation in cells plated on the cell-binding fragment of fibronectin and in cells plated on a synthetic polymer containing multiple RGD sequences. We have identified one of the proteins of the 115-130-kD cluster as pp125FAK, a tyrosine kinase recently localized in focal adhesions (Schaller, M. D., C. A. Borgman, B. S. Cobb, R. R. Vines, A. B. Reynolds, and J. T. Parsons. 1992. Proc. Natl. Acad. Sci. USA. 89:5192). A second protein that becomes tyrosine phosphorylated in response to extracellular matrix adhesion is identified as paxillin, a 70-kD protein previously localized to focal adhesions. Treatment of cells with the tyrosine kinase inhibitor herbimycin A diminished the adhesion-induced tyrosine phosphorylation of these proteins and inhibited the formation of focal adhesions and stress fibers. These results suggest a role for integrin-mediated tyrosine phosphorylation in the organization of the cytoskeleton as cells adhere to the extracellular matrix.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 1292 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3