Rapid exchange of mammalian topoisomerase IIα at kinetochores and chromosome arms in mitosis

Author:

Tavormina Penny A.12,Côme Marie-George1,Hudson Joanna R.1,Mo Yin-Yuan3,Beck William T.3,Gorbsky Gary J.1

Affiliation:

1. Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104

2. Universal Imaging Corporation, Downingtown, PA 19335

3. Department of Pharmaceutics and Pharmacodynamics, University of Illinois at Chicago, Chicago, IL 60612

Abstract

Astable cell line (GT2-LPk) derived from LLC-Pk was created in which endogenous DNA topoisomerase IIα (topoIIα) protein was downregulated and replaced by the expression of topoIIα fused with enhanced green fluorescent protein (EGFP–topoIIα). The EGFP–topoIIα faithfully mimicked the distribution of the endogenous protein in both interphase and mitosis. In early stages of mitosis, EGFP–topoIIα accumulated at kinetochores and in axial lines extending along the chromosome arms. During anaphase, EGFP–topoIIα diminished at kinetochores and increased in the cytoplasm with a portion accumulating into large circular foci that were mobile and appeared to fuse with the reforming nuclei. These cytoplasmic foci appearing at anaphase were coincident with precursor organelles of the reforming nucleolus called nucleolus-derived foci (NDF). Photobleaching of EGFP–topoIIα associated with kinetochores and chromosome arms showed that the majority of the protein rapidly exchanges (t1/2 of 16 s). Catalytic activity of topoIIα was essential for rapid dynamics, as ICRF-187, an inhibitor of topoIIα, blocked recovery after photobleaching. Although some topoIIα may be stably associated with chromosomes, these studies indicate that the majority undergoes rapid dynamic exchange. Rapid mobility of topoIIα in chromosomes may be essential to resolve strain imparted during chromosome condensation and segregation.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3