The histone demethylase LSD1/KDM1A promotes the DNA damage response

Author:

Mosammaparast Nima1234,Kim Haeyoung3,Laurent Benoit23,Zhao Yu1,Lim Hui Jun23,Majid Mona C.1234,Dango Sebastian23,Luo Yuying23,Hempel Kristina2,Sowa Mathew E.3,Gygi Steven P.3,Steen Hanno2,Harper J. Wade3,Yankner Bruce3,Shi Yang23

Affiliation:

1. Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University in St. Louis, St. Louis, MO 63110

2. Department of Medicine, Division of Newborn Medicine and Epigenetics Program, and Department of Pathology, Proteomic Center, Boston Children’s Hospital, Boston MA, 02115

3. Department of Cell Biology and Department of Genetics, Harvard Medical School, Boston, MA 02115

4. Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115

Abstract

Histone demethylation is known to regulate transcription, but its role in other processes is largely unknown. We report a role for the histone demethylase LSD1/KDM1A in the DNA damage response (DDR). We show that LSD1 is recruited directly to sites of DNA damage. H3K4 dimethylation, a major substrate for LSD1, is reduced at sites of DNA damage in an LSD1-dependent manner. The E3 ubiquitin ligase RNF168 physically interacts with LSD1 and we find this interaction to be important for LSD1 recruitment to DNA damage sites. Although loss of LSD1 did not affect the initial formation of pH2A.X foci, 53BP1 and BRCA1 complex recruitment were reduced upon LSD1 knockdown. Mechanistically, this was likely a result of compromised histone ubiquitylation preferentially in late S/G2. Consistent with a role in the DDR, knockdown of LSD1 resulted in moderate hypersensitivity to γ-irradiation and increased homologous recombination. Our findings uncover a direct role for LSD1 in the DDR and place LSD1 downstream of RNF168 in the DDR pathway.

Publisher

Rockefeller University Press

Subject

Cell Biology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3