Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles

Author:

Kirkham Matthew123,Fujita Akikazu123,Chadda Rahul4,Nixon Susan J.123,Kurzchalia Teymuras V.5,Sharma Deepak K.6,Pagano Richard E.6,Hancock John F.1,Mayor Satyajit4,Parton Robert G.123

Affiliation:

1. Institute for Molecular Bioscience, University of Queensland, Queensland 4072, Australia

2. Centre for Microscopy and Microanalysis, University of Queensland, Queensland 4072, Australia

3. School of Biomedical Sciences, University of Queensland, Queensland 4072, Australia

4. National Centre for Biological Sciences, Bangalore, 560 065, India

5. Max Planck Institute for Molecular Cell Biology and Genetics, Dresden D-01307, Germany

6. Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, MN 55905

Abstract

Using quantitative light microscopy and a modified immunoelectron microscopic technique, we have characterized the entry pathway of the cholera toxin binding subunit (CTB) in primary embryonic fibroblasts. CTB trafficking to the Golgi complex was identical in caveolin-1null (Cav1−/−) mouse embryonic fibroblasts (MEFs) and wild-type (WT) MEFs. CTB entry in the Cav1−/− MEFs was predominantly clathrin and dynamin independent but relatively cholesterol dependent. Immunoelectron microscopy was used to quantify budded and surface-connected caveolae and to identify noncaveolar endocytic vehicles. In WT MEFs, a small fraction of the total Cav1-positive structures were shown to bud from the plasma membrane (2% per minute), and budding increased upon okadaic acid or lactosyl ceramide treatment. However, the major carriers involved in initial entry of CTB were identified as uncoated tubular or ring-shaped structures. These carriers contained GPI-anchored proteins and fluid phase markers and represented the major vehicles mediating CTB uptake in both WT and caveolae-null cells.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 375 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3