ZASP: A New Z-band Alternatively Spliced PDZ-motif Protein

Author:

Faulkner Georgine1,Pallavicini Alberto2,Formentin Elide2,Comelli Anna1,Ievolella Chiara3,Trevisan Silvia3,Bortoletto Gladis2,Scannapieco Paolo3,Salamon Michela2,Mouly Vincent4,Valle Giorgio23,Lanfranchi Gerolamo23

Affiliation:

1. International Centre for Genetic Engineering and Biotechnology, I-34012 Trieste, Italy;

2. Dipartimento di Biologia, Università degli Studi di Padova, I-35121 Padova, Italy;

3. CRIBI Biotechnology Centre, Università degli Studi di Padova, I-35121 Padova, Italy and

4. Cytosquellette et Developpement, URA CNRS 2115, 75634 Paris Cedex 13, France

Abstract

PDZ motifs are modular protein–protein interaction domains, consisting of 80–120 amino acid residues, whose function appears to be the direction of intracellular proteins to multiprotein complexes. In skeletal muscle, there are a few known PDZ-domain proteins, which include neuronal nitric oxide synthase and syntrophin, both of which are components of the dystrophin complex, and actinin-associated LIM protein, which binds to the spectrin-like repeats of α-actinin-2. Here, we report the identification and characterization of a new skeletal muscle protein containing a PDZ domain that binds to the COOH-terminal region of α-actinin-2. This novel 31-kD protein is specifically expressed in heart and skeletal muscle. Using antibodies produced to a fragment of the protein, we can show its location in the sarcomere at the level of the Z-band by immunoelectron microscopy. At least two proteins, 32 kD and 78 kD, can be detected by Western blot analysis of both heart and skeletal muscle, suggesting the existence of alternative forms of the protein. In fact, several forms were found that appear to be the result of alternative splicing. The transcript coding for this Z-band alternatively spliced PDZ motif (ZASP) protein maps on chromosome 10q22.3–10q23.2, near the locus for infantile-onset spinocerebellar ataxia.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3