Author:
Prajitno Danawati Hari,Roesyadi Achmad,Al-Muttaqii Muhammad,Marlinda Lenny
Abstract
Biofuel has been considered as one of the environmentally friendly energy sources to substitute fossil fuel derived from non-edible vegetable oil. This research aims to investigate the effect of the non-edible vegetable oil composition on a specific hydrocarbons distribution contained in biofuel and the aromatics formation through hydrocracking reaction with the Co-Ni/HZSM-5 catalyst. The formation of aromatics from non-edible vegetable oils, such as: Cerbera manghas, rubber seed, and sunan candlenut oils, containing saturated, mono- and polyunsaturated fatty acids is presented. The hydrocracking reaction was carried out in a pressure batch reactor, a reaction temperature of 350 oC for 2 h, reactor pressure of 15 bar after flowing H2 for 1 hour, and a catalyst/oil ratio of 1 g/200 mL. Liquid hydrocarbon product was analyzed by gas chromatography-mass spectrometry. Based on the GC-MS analysis, hydrocracking on three different oils indicated that polyunsaturated fatty acids were required to produce relatively high aromatics content. The sunan candlenut oil can be converted to gasoil range hydrocarbons containing a small amount of aromatic through hydrocracking reaction. Meanwhile, the aromatics in liquid product from hydrocracking of Cerbera manghas and rubber seed oils were not found. Copyright © 2017 BCREC Group. All rights reserved.Received: 21st November 2016; Revised: 9th May 2017; Accepted: 20th May 2017; Available online: 27th October 2017; Published regularly: December 2017How to Cite: Prajitno, D.H., Roesyadi, A., Al-Muttaqii, M., Marlinda, L. (2017). Hydrocracking of Non-edible Vegetable Oils with Co-Ni/HZSM-5 Catalyst to Gasoil Containing Aromatics. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3):318-328 (doi:10.9767/bcrec.12.3.799.318-328)
Publisher
Bulletin of Chemical Reaction Engineering and Catalysis
Subject
Process Chemistry and Technology,Catalysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献