Localizational Alterations of Calcium, Phosphorus, and Calcification-Related Organics Such as Proteoglycans and Alkaline Phosphatase During Bone Calcification

Author:

Hoshi Kazuto1,Ejiri Sadakazu1,Ozawa Hidehiro1

Affiliation:

1. First Department of Oral Anatomy, Niigata University Faculty of Dentistry, Niigata, Japan

Abstract

Abstract To further approach the mechanisms of bone calcification, embryonic rat calvariae were observed at electron microscopic level by the means of fine structures and various cytochemical localizations, including nonspecific proteoglycan (PG) stained by cuprolinic blue (CB), decorin, chondroitin sulfate, hyaluronan, and alkaline phosphatase (ALP), as well as the elemental mapping of calcium (Ca) and phosphorus (P) by energy-filtering transmission electron microscopy (EFTEM). In the calvariae, calcification advanced as the distance from osteoblasts increased. Closer to the osteoblasts, the osteoid was marked by an abundance of CB-positive PGs around collagen fibrils. After crystallization within matrix vesicles, calcified nodules formed and expanded, creating a coherent calcified matrix. The sizes of CB-positive PG-like structures diminished as calcification proceeded. Although small CB-positive structures were accumulated in early stage-calcified nodules, they were localized along the periphery of larger calcified nodules. Cytochemical tests for decorin, chondroitin sulfate, and hyaluronan determined their presence in the areas around collagen fibrils of the osteoid, as well as in and around calcified nodules, whereas ALP was found in the matrix vesicles, as well as in and around the calcified nodules. Ca tended to localize at the PG sites, while P often mapped to the collagen fibril structures, in the uncalcified matrix. In contrast, Ca/P colocalization was visible in and around the calcified nodules, where ALP and smaller CB-positive structures were observed. The difference in the localization patterns of Ca and P in uncalcified areas may limit the local [Ca2+][PO43−] product, leading to the general inhibition of hydroxyapatite crystallization. The downsizing of CB-positive structures suggested enzymatic fragmentation of PGs. Such structural alterations would contribute to the preservation and transport of calcium. ALP possesses the ability to boost local phosphate anion concentration. Therefore, structurally altered PGs and ALP may cooperate in Ca/P colocalization, thus promoting bone calcification.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3