A New Extended Mixture Skew Normal Distribution, With Applications

Author:

Barakat Haroon M.,Aboutahoun Abdallh W.,El-kadar Naeema

Abstract

One of the most important property of the mixture normal distributions-model is its flexibility to accommodate various types of distribution functions (df's). We show that the mixture of the skew normal distribution and its reverse, after adding a location parameter to the skew normal distribution, and adding the same location parameter with different sign to its reverse is a family of df's that contains all the possible types of df's. Besides, it has a very remarkable wide range of the indices of skewness and kurtosis. Computational techniques using EM-type algorithms are employed for iteratively computing maximum likelihood estimates of the model parameters. Moreover, an application with a body mass index real data set is presented.

Publisher

Universidad Nacional de Colombia

Subject

Statistics and Probability

Reference38 articles.

1. Akaike, H., Petrov, B. N. & Csaki, F. (1973), Information theory and the maxi mum likelihood principle, in ‘Second International Symposium on Information Theory’, Budapest.

2. Al-Hussaini, E. K. & Ahsanullah, M. (2015), Exponentiated distributions, Atlantis Press, Paris, France.

3. Alzaatreh, A. (2011), A new method for generating families of continuous distributions, Ph.D. Thesis, Central Michigan University Mount Pleasant, Michigan.

4. Alzaatreh, A., Famoye, F. & Lee, C. (2013), ‘A new method for generating families of continuous distributions’, Metron 71, 63–79.

5. Arellano-Valle, R. B., Gomez, H. W. & Quintana, F. A. (2004), ‘A new class of skew-normal distribution’, Communications in Statistics-Theory and Methods 33(7), 1465–1480.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3