青藏高原东缘峨眉山新生代加速抬升剥蚀作用

周政, 吴娟, 王国芝, 邓江红, 邓斌, 罗强, 姜磊, 刘树根, 邓宾. 2020. 青藏高原东缘峨眉山新生代加速抬升剥蚀作用. 地球物理学报, 63(4): 1370-1385, doi: 10.6038/cjg2020N0193
引用本文: 周政, 吴娟, 王国芝, 邓江红, 邓斌, 罗强, 姜磊, 刘树根, 邓宾. 2020. 青藏高原东缘峨眉山新生代加速抬升剥蚀作用. 地球物理学报, 63(4): 1370-1385, doi: 10.6038/cjg2020N0193
ZHOU Zheng, WU Juan, WANG GuoZhi, DENG JiangHong, DENG Bin, LUO Qiang, JIANG Lei, LIU ShuGen, DENG Bin. 2020. Cenozoic accelerated erosion of the Emeishan, eastern margin of Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 63(4): 1370-1385, doi: 10.6038/cjg2020N0193
Citation: ZHOU Zheng, WU Juan, WANG GuoZhi, DENG JiangHong, DENG Bin, LUO Qiang, JIANG Lei, LIU ShuGen, DENG Bin. 2020. Cenozoic accelerated erosion of the Emeishan, eastern margin of Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 63(4): 1370-1385, doi: 10.6038/cjg2020N0193

青藏高原东缘峨眉山新生代加速抬升剥蚀作用

  • 基金项目:

    自然科学基金(41402119,2014JQ0057,41472107,41230313)和地质学国家级实验教学示范中心-成都理工大学峨眉山教学实习基地建设经费联合资助

详细信息
    作者简介:

    周政, 男, 1995年生, 硕士研究生, 主要从事含油气盆地分析、低温热年代学研究.E-mail:zhouzheng2707@qq.com

    通讯作者: 吴娟.女, 1985年生, 助理研究员, 主要从事油气成藏动力学过程和机理研究.E-mail:wujuan16@cdut.edu.cn
  • 中图分类号: P314;P542

Cenozoic accelerated erosion of the Emeishan, eastern margin of Tibetan Plateau

More Information
  • 本文通过峨眉山基底卷入构造带低温热年代学(磷灰石和锆石裂变径迹、锆石(U-Th)/He)研究,结合典型构造-热结构特征诠释峨眉山晚中-新生代冲断扩展变形与热年代学耦合性.峨眉山磷灰石裂变径迹(AFT)和锆石(U-Th)/He(ZHe)年龄值分别为4~30 Ma和16~118 Ma.ZHe年龄与海拔高程关系揭示出ZHe系统抬升剥蚀残存的部分滞留带(PRZ).低温热年代学年龄与峨眉山构造分带性具有明显相关性特征:万年寺逆断层上盘基底卷入构造带AFT年龄普遍小于10 Ma,万年寺逆断层下盘扩展变形带AFT年龄普遍大于10 Ma;且空间上AFT年龄与断裂带具有明显相关性,它揭示出峨眉山扩展变形带中新世晚期以来断层冲断缩短构造活动.低温热年代学热史模拟揭示峨眉山构造带晚白垩世以来的多阶段性加速抬升剥蚀过程,基底卷入构造带岩石隆升幅度大约达到7~8 km,渐新世以来抬升剥蚀速率达0.2~0.4 mm·a-1,其新生代多阶段性构造隆升动力学与青藏高原多板块间碰撞过程及其始新世大规模物质东向扩展过程密切相关.

  • 加载中
  • 图 1 

    青藏高原东缘峨眉山地质简图及其年代学样品特征

    Figure 1. 

    Geological map of the Emeishan and sampling location of low-temperature thermochronometer

    图 2 

    峨眉山磷灰石裂变径迹样品单颗粒年龄雷达图特征

    Figure 2. 

    Radial plots of samples′ apatite fission track in the Emeishan

    图 3 

    峨眉山热年代学特征与海拔高程综合关系图

    Figure 3. 

    Relationships among the AFT age, length and elevation across the Emeishan

    图 4 

    峨眉山典型低温热年代学样品热史模拟特征图

    Figure 4. 

    Modeled T-t history of the Emeishan based on multisystem low-temperature thermochronological data

    图 5 

    峨眉山构造剖面与低温热年代学综合对比图

    Figure 5. 

    NE-SW structural section of the Emeishan with thermochronological ages related to isotherms of closure-temperature

    图 6 

    新生代峨眉山楔入作用及其快速抬升剥蚀年代学特征模式图

    Figure 6. 

    Geodynamics of the Emeishan, at the eastern margin of the Tibetan Plateau

    表 1 

    峨眉山热年代学样品及其年代测试表

    Table 1. 

    Low-temperature thermochronometer data of the Emeishan

    样品号 岩性
    /地层
    经度(°E)
    纬度(°N)
    采样
    高程
    /m
    Nc ρd(Nd)
    (×106 cm-2)
    ρs(Ns)
    (×105cm-2)
    ρi(Ni)
    (×105cm-2)
    铀含量
    (ppm)
    P(2)
    (%)
    ZFT
    (Ma±1σ)
    ZHe
    (Ma±1σ)
    AFT年龄
    (Ma±1σ)
    径迹长度
    (μm±1σ)(Nj)
    Dpar
    (μm)
    S17030304 玄武岩/P2e WPT756
    29.52, 103.33
    2950 - 118.1±3.7 -
    S17030302 砂岩/ O1l WPT242
    29.55, 103.34
    2200 - 30.0±0.7 -
    DB80502 砂岩/∈1c WPT243
    29.56, 103.35
    1780 27 0.734
    (1834)
    1.266
    (192)
    26.31
    (3988)
    44.8 94.1 - 26.1±1.5 6.2±0.5 - 1.48±0.2
    (1.3~2.1)
    DB80803 砂岩/ T1d WPT252
    29.58, 103.41
    550 30 0.697
    (1743)
    0.2703
    (59)
    3.486
    (761)
    6.3 100 - - 9.5±1.3 - 1.65±0.3
    (1.1~2.3)
    DB80804 砂岩/ T1f WPT254
    29.57, 103.41
    550 30 0.688
    (1720)
    0.3074
    (91)
    2.804
    (830)
    5.1 100 - - 13.3±1.5 13.7±0.3
    (25)
    1.64±0.3
    (1.0~2.5)
    DB80805 砂岩/ T3x WPT255
    29.58, 103.42
    530 22 0.679
    (1697)
    1.727
    (90)
    19.9
    (1037)
    36.6 99.9 - - 10.4±1.2 - 1.66±0.3
    (1.3~2.2)
    DB80806 砂岩/ E1-2m WPT256
    29.58, 103.44
    470 24 0.67
    (1675)
    3.789
    (380)
    16.66
    (1671)
    31.1 45.9 - - 26.8±1.8 12.3±0.4
    (19)
    1.50±0.2
    (1.1~2.1)
    DB80807 砂岩/ K1t WPT257
    29.60, 103.44
    500 30 0.661
    (1652)
    3.188
    (806)
    19.95
    (5044)
    37.7 86.6 - - 18.6±1.0 12.9±0.2
    (87)
    1.55±0.3
    (0.9~2.2)
    DB80809 砂岩/ T1f WPT253
    29.58, 103.41
    540 30 0.652
    (1629)
    0.4286
    (85)
    3.636
    (721)
    7 100 - - 13.6±1.6 - 1.61±0.3
    (1.1~2.5)
    DB80903 砂岩/ T1d WPT260
    29.57, 103.39
    680 25 0.643
    (1606)
    0.4408
    (76)
    3.318
    (572)
    6.4 100 - - 15.1±1.9 - 1.72±0.3
    (1.2~2.7)
    DB80503 花岗岩/pre-∈ WPT244
    29.55, 103.38
    900 30 0.724
    (1811)
    0.6619
    (148)
    11.49
    (2570)
    19.8 99.2 74.8±16.3 16.0±2.3 7.4±0.7 12.5±0.4
    (56)
    1.45±0.3
    (1.0~2.1)
    DB80701 花岗岩/pre-∈ WPT246
    29.52, 103.38
    1050 30 0.715
    (1788)
    0.508
    (114)
    14.08
    (3160)
    24.6 100 - - 4.6±0.5 - 1.43±0.2
    (1.0~1.8)
    DB80702 砂岩/P3x WPT247
    29.51, 103.39
    690 30 0.706
    (1766)
    1.014
    (118)
    9.923
    (1155)
    17.6 99.9 - - 12.7±1.3 13.5±0.5
    (7)
    1.7±0.4
    (1.0~2.8)
    ACP-44* 花岗岩/pre-∈ 29.53, 103.38 1017 25 0.963
    (2408)
    1.331
    (140)
    1.204
    (1267)
    15.6 86.3 - - 18.6±1.7 13.67±0.15
    (62)
    ACP-45* 花岗岩/pre-∈ 29.53, 103.38 790 25 0.955
    (2386)
    1.425
    (102)
    1.117
    (800)
    14.6 87.4 - - 21.3±2.3 13.66±0.13
    (61)
    ACP-46* 花岗岩/pre-∈ 29.52, 103.38 670 21 0.946
    (2365)
    1.643
    (81)
    1.093
    (539)
    14.4 87.5 - - 24.9±3.0 13.45±0.18
    (36)
    ACP-47* 花岗岩/pre-∈ 29.49, 103.36 870 24 0.937
    (2343)
    1.371
    (102)
    1.015
    (755)
    13.5 72.8 - - 22.2±2.4 13.53±0.16
    (34)
    ACP-48* 花岗岩/pre-∈ 29.44, 103.33 1330 23 0.928
    (2321)
    5.578
    (309)
    2.989
    (1656)
    40.3 89.1 - - 30.3±2.2 13.75±0.13
    (80)
    注:ZFT为磷灰石裂变径迹样品年龄,ZHe为(U-Th)/He年龄,AFT为磷灰石裂变径迹年龄,所有样品年龄为中值年龄,样品年龄采用Zeta常数法计算获得,Apatite-Zeta CN5=353.0±10;Nc为样品测试颗粒数量;ρdρsρi分别为标准、自发和诱发径迹密度;NdNsNi分别为标准、自发和诱发统计径迹数量;P(2)为Chi-sq检验概率,P(2)>5%时,通常认为所测各单颗粒年龄属于同组年龄,否则,属于不同年龄组;其中带*号样品据Meng et al.(2016).
    下载: 导出CSV
  •  

    Aitken A R A. 2011. Did the growth of Tibetan topography control the locus and evolution of Tien Shan mountain building? Geology, 39(5):459-462, doi:10.1130/G31712.1.

     

    An Y F, Han Z J, Wan J L. 2008. Fission track dating of the Cenozoic uplift in Mabian area, southern Sichuan Province, China. Science in China Series D:Earth Sciences, 51(9):1238-1247, doi:10.1007/s11430-008-0105-5.

     

    Burchfiel B C, Chen Z L, Liu Y, et al. 1995. Tectonics of the Longmen Shan and adjacent regions, central China. International Geology Review, 37(8):661-735, doi:10.1080/00206819509465424.

     

    Chung S L, Lo C H, Lee T Y, et al. 1998. Diachronous uplift of the Tibetan Plateau starting 40 Myr ago. Nature, 394(6695):769-773, doi:10.1038/29511.

     

    Chung S L, Chu M F, Zhang Y Q, et al. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4):173-196, doi:10.1016/j.earscirev.2004.05.001.

     

    Clark M K, Royden L H. 2000. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8):703-706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2

     

    Clark M K, House M A, Royden L H, et al. 2005. Late Cenozoic uplift of southeastern Tibet. Geology, 33(6):525-528, doi:10.1130/G21265.1.

     

    DeCelles P G, Nucea M N, Kapp P, et al. 2009. Cyclicity in cordilleran orogenic systems. Nature Geoscience, 2(4):251-257, doi:10.1038/ngeo469.

     

    Deng B, Liu S G, Li Z W, et al. 2009. Uplifting characteristics in eastern margin area of Tibetan Plateau:Evidence from low-temperature thermochronology. Quaternary Sciences (in Chinese), 29(3):574-585.

     

    Deng B, Liu S G, Li Z W, et al. 2013. Differential exhumation at eastern margin of the Tibetan Plateau, from apatite fission-track thermochronology. Tectonophysics, 591:98-115, doi:10.1016/j.tecto.2012.11.012.

     

    Deng B, Liu S G, Wang G Z, et al., 2013. Cenozoic uplift and exhumation in southern Sichuan Basin-Evidence from low-temperature thermochronology. Chinese Journal of Geophysics (in Chinese), 56(6):1958-1973, doi:10.6038/cjg20130618.

     

    Deng B, Liu S G, Enkelmann E, et al. 2015. Late Miocene accelerated exhumation of the Daliang Mountains, southeastern margin of the Tibetan Plateau. International Journal of Earth Sciences, 104(4):1061-1081, doi:10.1007/s00531-014-1129-z.

     

    Deng B, Liu S G, Jiang L, et al., 2018. Tectonic uplift of the Xichang Basin (SE Tibetan Plateau) revealed by structural geology and thermochronology data. Basin Research, 30(1):75-96, doi:10.1111/bre.12243.

     

    Deng J, Wang Q F, Li G J, et al. 2014. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138:268-299, doi:10.1016/j.earscirev.2014.05.015.

     

    Ding L, Zhong D L, Yin A, et al. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192(3):423-438, doi:10.1016/S0012-821X(01)00463-0.

     

    England P, Molnar P. 1990. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet. Nature, 344(8):140-142, doi:10.1038/344140a0.

     

    Eroǧlu S, Siebel W, Danišik M, et al. 2013. Multi-system geochronological and isotopic constraints on age and evolution of the Gaoligongshan metamorphic belt and shear zone system in western Yunnan, China. Journal of Asian Earth Sciences, 73:218-239, doi:10.1016/j.jseaes.2013.03.031.

     

    Farley K A, Wolf R A, Silver L T. 1996. The effects of long alpha-stopping distances on (U-Th)/He ages. Geochimica et Cosmochimica Acta, 60(21):4223-4229, doi:10.1016/S0016-7037(96)00193-7.

     

    Gallagher K, Brown R, Johnson C. 1998. Fission track analysis and its applications to geological problems. Annual Review of Earth & Planetary Sciences, 26(1):519-572, doi:10.1146/annurev.earth.26.1.519.

     

    Godard V, Pik R, Lavé J, et al. 2009. Late Cenozoic evolution of the central Longmen Shan, eastern Tibet:Insight from (U-Th)/He thermochronometry. Tectonics, 28(5):TC5009, doi:10.1029/2008TC002407.

     

    Huang Z C, Wang P, Xu M J, et al. 2015. Mantle structure and dynamics beneath SE Tibet revealed by new seismic images. Earth and Planetary Science Letters, 411:100-111, doi:10.1016/j.epsl.2014.11.040.

     

    Hubbard J, Shaw J H. 2009. Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M=7.9) earthquake. Nature, 458(12):194-197, doi:10.1038/nature07837.

     

    Jia C Z, Li B L, Lei Y L, et al. 2013. The structure of Circum-Tibetan Plateau Basin-Range System and the large gas provinces. Science China Earth Sciences, 56(11):1853-1863, doi:10.1007/s11430-013-4649-7.

     

    Jia D, Wei G Q, Chen Z X, et al. 2006. Longmen Shan fold-thrust belt and its relation to the western Sichuan Basin in central China:New insights from hydrocarbon exploration. AAPG Bulletin, 90(9):1425-1447. doi: 10.1306/03230605076

     

    Jin W J, He D F, Lei Z Y, et al. 2012. Uplift of southeastern Tibet and Sanjiang area during Cenozoic era-Thermal inversion analysis from fission track data. Chinese Journal of Geology (in Chinese), 47(3):714-729.

     

    Ketcham R A, Donelick R A, Carlson W D. 1999. Variability of apatite fission-track annealing kinetics; III, Extrapolation to geological time scales. American Mineralogist, 84(9):1235-1255. doi: 10.2138/am-1999-0903

     

    Kirby E, Reiners P W, Krol M A, et al. 2002. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau:Inferences from 40Ar/39Ar and (U-Th)/He thermochronology. Tectonics, 21(1):1001, doi:10.1029/2000TC001246.

     

    Lacombe O, Bellahsen N. 2016. Thick-skinned tectonics and basement-involved fold-thrust belts:insights from selected Cenozoic orogens. Geological Magazine, 153(5-6):763-810, doi:10.1017/S0016756816000078.

     

    Lai Q Z, Ding L, Wang H W, et al. 2007. Constraining the stepwise migration of the eastern Tibetan Plateau margin by apatite fission track thermochronology. Science in China Series D:Earth Sciences, 50(2):172-183. doi: 10.1007/s11430-007-2048-7

     

    Lee H Y, Chung S L, Wang J R, et al. 2003. Miocene Jiali faulting and its implications for Tibetan tectonic evolution. Earth and Planetary Science Letters, 205(3-4):185-194. doi: 10.1016/S0012-821X(02)01040-3

     

    Lei Y L, Gong D H, Wang X M, et al. 2008. Discussion about using different modes of apatite fission track thermochronology to constrain cooling histories of rocks:an example from the batholith in Dulong river region, west Yunnan. Progress in Geophysics (in Chinese), 23(2):422-432.

     

    Leloup P H, Lacassin R, Tapponnier P, et al. 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251(1-4):3-10, 13-84. doi: 10.1016/0040-1951(95)00070-4

     

    Leloup P H, Arnaud N, Lacassin R, et al. 2001. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia. Journal of Geophysical Research:Solid Earth, 106(B4):6683-6732. doi: 10.1029/2000JB900322

     

    Li C, Van Der Hilst R D, Meltzer A S, et al. 2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 274(1-2):157-168. doi: 10.1016/j.epsl.2008.07.016

     

    Li S H, Deng C L, Yao H T, et al. 2013. Magnetostratigraphy of the Dali Basin in Yunnan and implications for late Neogene rotation of the southeast margin of the Tibetan Plateau. Journal of Geophysical Research:Solid Earth, 118(3):791-807. doi: 10.1002/jgrb.50129

     

    Li Z W, Liu S G, Chen H D, et al. 2012. Spatial variation in Meso-Cenozoic exhumation history of the Longmen Shan thrust belt (eastern Tibetan Plateau) and the adjacent western Sichuan basin:Constraints from fission track thermochronology. Journal of Asian Earth Sciences, 47:185-203. doi: 10.1016/j.jseaes.2011.10.016

     

    Lin T H, Lo C H, Chung S L, et al. 2009. 40Ar/39Ar dating of the Jiali and Gaoligong shear zones:Implications for crustal deformation around the Eastern Himalayan Syntaxis. Journal of Asian Earth Sciences, 34(5):674-685. doi: 10.1016/j.jseaes.2008.10.009

     

    Liu F L, Wang F, Liu P H, et al. 2013a. Multiple metamorphic events revealed by zircons from the Diancang Shan-Ailao Shan metamorphic complex, southeastern Tibetan Plateau. Gondwana Research, 24(1):429-450. doi: 10.1016/j.gr.2012.10.016

     

    Liu F L, Wang F, Liu P H, et al. 2015. Multiple partial melting events in the Ailao Shan-Red River and Gaoligong shan complex belts, SE Tibetan Plateau:Zircon U-Pb dating of granitic leucosomes within migmatites. Journal of Asian Earth Sciences, 110:151-169. doi: 10.1016/j.jseaes.2014.06.025

     

    Liu S G, Ma Y S, Sun W, et al. 2008. Studying on the differences of Sinian natural gas pools between Weiyuan gas field and Ziyang gas-brone area, Sichuan basin. Acta Geologica Sinica (in Chinese), 82(3):328-337. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200803006

     

    Liu S G, Deng B, Li Z W, et al. 2012. Architecture of basin-mountain systems and their influences on gas distribution:a case study from the Sichuan Basin, South China. Journal of Asian Earth Sciences, 47:204-215. doi: 10.1016/j.jseaes.2011.10.012

     

    Liu S G, Deng B, Jansa L, et al. 2013b. Late Triassic thickening of the Songpan-Garzê Triassic flysch at the edge of the northeastern Tibetan Plateau. International Geology Review, 55(16):2008-2015. doi: 10.1080/00206814.2013.812705

     

    Meng K, Wang E, Wang G. 2016. Uplift of the Emei Shan, western Sichuan Basin:implication for eastward propagation of the Tibetan Plateau in Early Miocene. Journal of Asian Earth Sciences, 115:29-39. doi: 10.1016/j.jseaes.2015.09.020

     

    Molnar P. 1988. Continental tectonics in the aftermath of plate tectonics. Nature, 335(6186):131-137. doi: 10.1038/335131a0

     

    Ouimet W, Whipple K, Royden L H, et al. 2010. Regional incision of the eastern margin of the Tibetan Plateau. Lithosphere, 2(1):50-63. doi: 10.1130/L57.1

     

    Reiners P W, Spell T L, Nicolescu S, et al. 2004. Zircon (U-Th)/He thermochronometry:He diffusion and comparisons with 40Ar/39Ar dating. Geochimica et Cosmochimica Acta, 68(8):1857-1887. doi: 10.1016/j.gca.2003.10.021

     

    Reiners P W, Brandon M T. 2006. Using thermochronology to understand orogenic erosion. Annual Review of Earth and Planetary Sciences, 34:419-466. doi: 10.1146/annurev.earth.34.031405.125202

     

    Replumaz A, Negredo A M, Guillot S, et al. 2010. Multiple episodes of continental subduction during India/Asia convergence:Insight from seismic tomography and tectonic reconstruction. Tectonophysics, 483(1-2):125-134. doi: 10.1016/j.tecto.2009.10.007

     

    Richardson N J, Densmore A L, Seward D, et al. 2008. Extraordinary denudation in the Sichuan Basin:Insights from low-temperature thermochronology adjacent to the eastern margin of the Tibetan Plateau. Journal of Geophysical Research:Solid Earth, 113(B4):B04409, doi:10.1029/2006JB004739.

     

    Roger F, Calassou S, Lancelot J, et al. 1995. Miocene emplacement and deformation of the Konga Shan granite (Xianshui He fault zone, west Sichuan, China):Geodynamic implications. Earth and Planetary Science Letters, 130(1-4):201-216. doi: 10.1016/0012-821X(94)00252-T

     

    Roger F, Malavieille J, Leloup Ph H, et al. 2004. Timing of granite emplacement and cooling in the Songpan-Garze Fold Belt (eastern Tibetan Plateau) with tectonic implications. Journal of Asian Earth Sciences, 22(5):465-481. doi: 10.1016/S1367-9120(03)00089-0

     

    Royden L H, Burchfiel B C, Van Der Hilst R D. 2008. The geological evolution of the Tibetan Plateau. Science, 321(1054):1054-1058. http://d.old.wanfangdata.com.cn/Periodical/dqkx-e201306003

     

    Sato K, Liu Y Y, Zhu Z C, et al. 2001. Tertiary paleomagnetic data from northwestern Yunnan, China:further evidence for large clockwise rotation of the Indochina block and its tectonic implications. Earth and Planetary Science Letters, 185(1-2):185-198. doi: 10.1016/S0012-821X(00)00377-0

     

    Seward D, Burg J P. 2008. Growth of the Namche Barwa Syntaxis and associated evolution of the Tsangpo Gorge:Constraints from structural and thermochronological data. Tectonophysics, 451(1-4):282-289. doi: 10.1016/j.tecto.2007.11.057

     

    Shi X B, Qiu X L, Liu H L, et al. 2006. Cenozoic cooling history of Lincang granitoid batholith, western Yunnan:Evidence from fission track data. Chinese Journal of Geophysics (in Chinese), 49(1):135-142. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/cjg2.820

     

    Stewart R J, Hallet B, Zeitler P K, et al. 2008. Brahmaputra sediment flux dominated by highly localized rapid erosion from the easternmost Himalaya. Geology, 36(9):711-714. doi: 10.1130/G24890A.1

     

    Stuwe K, White L, Brown R. 1994. The influence of eroding topography on steady-state isotherms. Application to fission track analysis. Earth and Planetary Science Letters, 124(1-4):63-74. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0012-821X(94)00068-9/

     

    Tan X B, Lee Y H, Chen W Y, et al. 2014. Exhumation history and faulting activity of the southern segment of the Longmen Shan, eastern Tibet. Journal of Asian Earth Sciences, 81:91-104. doi: 10.1016/j.jseaes.2013.12.002

     

    Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547):1671-1677. doi: 10.1126/science.105978

     

    Tian Y T, Kohn B P, Gleadow A J W, et al. 2013a. Constructing the Longmen Shan eastern Tibetan Plateau margin:Insights from low-temperature thermochronology. Tectonics, 32(3):576-592, doi:10.1002/tect.20043.

     

    Tian Y T, Kohn B P, Gleadow A J W, et al. 2013b. A thermochronological perspective on the morphotectonic evolution of the southeastern Tibetan Plateau. Journal of Geophysical Research:Solid Earth, 119(1):676-698, doi:10.1002/2013JB010429.

     

    Wang E, Kirby E, Furlong K P, et al. 2012a. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience, 5(9):640-645, doi:10.1038/ngeo1538.

     

    Wang G, Wan J L, Wang E Q. 2006. Extensional collapse of the southern part of the Gaoligong range in the western Yunnan, China and its tectonic origin. Acta Geologica Sinica (in Chinese), 80(9):1262-1273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200609004

     

    Wang S F, Jiang G G, Xu T D, et al. 2012b. The Jinhe-Qinghe fault-an inactive branch of the Xianshuihe-Xiaojiang fault zone, Eastern Tibet. Tectonophysics, 544-545:93-102. doi: 10.1016/j.tecto.2012.04.004

     

    Wilson C J L, Fowler A P. 2011. Denudational response to surface uplift in east Tibet:Evidence from apatite fission-track thermochronology. GSA Bulletin, 123(9-10):1966-1987, doi:10.1130/B30331.1.

     

    Wolf R A, Farley K A, Kass D M. 1998. Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer. Chemical Geology, 148(1-2):105-114. doi: 10.1016/S0009-2541(98)00024-2

     

    Xiang S Y, Ma X M, Zhaixi Z R, et al. 2007. Record of apatite fission track of the different uplift in both sides of Jiali fault belt since late Cenozoic. Earth Science, 32:615-621. https://www.sciencedirect.com/science/article/pii/S0012821X06004122

     

    Xu G Q, Kamp P J J. 2000. Tectonics and denudation adjacent to the Xianshuihe fault, eastern Tibetan Plateau:Constraints from fission track thermochronology. Journal of Geophysical Research:Solid Earth, 105(B8):19231-19251. doi: 10.1029/2000JB900159

     

    Zhang B, Zhang J J, Zhong D L. 2013. Structure, kinematics and ages of transpression during strain-partitioning in the Chongshan shear zone, western Yunnan, China. Journal of Structural Geology, 32(4):445-463. https://www.sciencedirect.com/science/article/pii/S0191814110000222

     

    Zhang G W, Guo A L, Wang Y J, et al. 2013. Tectonics of South China continent and its implications. Science China Earth Sciences, 56(11):1804-1828, doi:10.1007/s11430-013-4679-1.

     

    Zhang P Z, Shen Z K, Wang M, et al. 2004a. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9):809-812. doi: 10.1130/G20554.1

     

    Zhang Y Q, Chen W, Yang N. 2004b. 40Ar/39Ar dating of shear deformation of the Xianshuihe fault zone in west Sichuan and its tectonic significance. Science in China Ser. D Earth Sciences, 47(9):794-803. http://onlinelibrary.wiley.com/doi/10.1029/2011TC003044/full

     

    Zhu C Q, Xu M, Yuan Y S, et al. 2010. Palaeogeothermal response and record of the effusing of Emeishan basalts in the Sichuan basin. Chinese Science Bulletin, 55(10):949-956. doi: 10.1007/s11434-009-0490-y

     

    邓宾, 刘树根, 李智武等. 2009.青藏高原东缘地区隆升作用特征-低温年代学证据.第四纪研究, 29(3):574-585. doi: 10.3969/j.issn.1001-7410.2009.03.018

     

    邓宾, 刘树根, 王国芝等. 2013.四川盆地南部地区新生代隆升剥露研究——低温热年代学证据.地球物理学报, 56(6):1958-1973, doi:10.6038/cjg20130618. http://www.geophy.cn//CN/abstract/abstract9580.shtml

     

    贾承造, 李本亮, 雷永良等. 2013.环青藏高原盆山体系构造与中国中西部天然气大气区.中国科学:地球科学, 43(10):1621-1631. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201310006

     

    金维浚, 何登发, 雷振宇等. 2012.青藏高原东南部及三江地区新生代构造隆升-来自裂变径迹热史反演分析.地质科学, 47(3):714-729. doi: 10.3969/j.issn.0563-5020.2012.03.011

     

    雷永良, 龚道好, 王先美等. 2008.应用裂变径迹不同模式约束岩体冷却史的初步探讨-以滇西独龙江岩体为例.地球物理学进展, 23(2):422-432. http://d.old.wanfangdata.com.cn/Periodical/dqwlxjz200802015

     

    刘树根, 马永生, 孙玮等. 2008.四川盆地威远气田和资阳含气区震旦系油气成藏差异性研究.地质学报, 82(3):328-337. doi: 10.3321/j.issn:0001-5717.2008.03.006

     

    施小斌, 丘学林, 刘海龄等. 2006.滇西临沧花岗岩基新生代剥蚀冷却的裂变径迹证据.地球物理学报, 49(1):135-142. doi: 10.3321/j.issn:0001-5733.2006.01.019 http://www.geophy.cn//CN/abstract/abstract100.shtml

     

    王刚, 万景林, 王二七. 2006.高黎贡山脉南部的晚新生代构造-重力垮塌及其成因.地质学报, 80(9):1262-1273. doi: 10.3321/j.issn:0001-5717.2006.09.004

     

    张国伟, 郭安林, 王岳军等. 2013.中国华南大陆构造与问题.中国科学:地球科学, 43(10):1553-1582. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201310003

     

    朱传庆, 徐明, 袁玉松等. 2010.峨眉山玄武岩喷发在四川盆地的地热学响应.科学通报, 55(6):474-482. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201006012

     

    李小明, 谭凯旋, 龚革联等. 2000.裂变径迹法对兰坪盆地构造热演化与成矿作用的初步研究.矿物岩石, 20(2):40-42. doi: 10.3969/j.issn.1001-6872.2000.02.009

  • 加载中

(6)

(1)

计量
  • 文章访问数:  3188
  • PDF下载数:  446
  • 施引文献:  0
出版历程
收稿日期:  2019-05-15
修回日期:  2019-07-08
上线日期:  2020-04-01

目录