Transfer Learning from Non-Medical Images to Medical Images Using Deep Learning Algorithms

Author:

Osmani Nooshin,Rezayi SorayyaORCID,Esmaeeli ErfanORCID,Karimi AfsanehORCID

Abstract

Introduction: Machine learning, especially deep convolutional neural networks (DCNNs), is a popular method for computerizing medical image analysis. This study aimed to develop DCNN models for histopathology image classification utilizing transfer learning.Material and Methods: We utilized 16 different pre-trained DCNNs to analyze the histopathology images from the animal diagnostic laboratory (ADL) database. During the image preprocessing stage, we applied two methods. The first method involved subtracting the mean of ImageNet images from all images. The second method involved subtracting the mean of histopathology training images from all images. Next, in the 16 pre-trained networks, feature extraction was done from their final six layers, and the features extracted from each layer were fed separately into the linear and non-linear support vector machine (SVM) for classification.Results: The results obtained from the ADL database show that the classification rate in lung tissue images is much better than that of the kidney and spleen. For example, the lowest detection rate in non-linear SVM for lung tissue is 14.96%, almost close to the highest accuracy in kidney and spleen tissue. The classification accuracy of the spleen images is better than that of the kidneys, with only a slight difference. In linear SVM on lung images, ResNet101 obtained the most accurate result with a value of 99.56%, followed by ResNet50, ResNet152, VGG_16, and VGG_19. In non-linear SVM on lung tissue images, the ResNet101 network with 99.65% and ResNet50 with 99.21%, followed by ResNet152, VGG_16, and VGG_19 obtained the highest detection rate.Conclusion: The classification results obtained from different methods on the ADL (including kidney, spleen, and lung histopathology images) database, confirmed the validity of transferring knowledge between non-medical and medical histopathology images. Additionally, it demonstrates the success of combining classifiers trained on deep features. This research obtained higher accuracy in the ADL database than the works done.

Publisher

Farname, Inc.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of artificial intelligence in chronic myeloid leukemia (CML) disease prediction and management: a scoping review;BMC Cancer;2024-08-20

2. Histopathological Cancer Detection Using Pre-Trained Models;2024 International Conference on Smart Systems for Electrical, Electronics, Communication and Computer Engineering (ICSSEECC);2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3