Larvicidal Effect of Spores and Metabolites Extracts of Aspergillus Fumigatus against Culex Mosquito Larvae

Author:

Kabir SuleimanORCID,Lawal NuraORCID,Ganiyu Aderounmu IbrahimORCID,Suleiman Ibrahim

Abstract

Study’s Novelty/Excerpt This study introduces an approach to controlling Culex mosquito populations by utilizing metabolites and spore extracts of Aspergillus fumigatus, marking a departure from traditional chemical insecticides that often lead to resistance and environmental harm. The research is significant in identifying specific bioactive compounds, such as 9-eicosene and squalene, through GC-MS analysis, which have shown 100% larvicidal efficacy at higher concentrations. By highlighting the potential of fungal extracts as an eco-friendly alternative, this work opens new avenues for sustainable mosquito vector control strategies. Full Abstract Culex mosquito species are known to transmit diseases such as dengue fever, West Nile virus infection, malaria, lymphatic filariasis, and Japanese encephalitis. An estimated 120 million people suffer from mosquito-borne diseases across the globe. Repeated use of chemical insecticides has led to the emergence of insecticide resistance by Culex mosquito species, pollution of the environment, and harmful impacts on non-target organisms. The purpose of this study is to evaluate the larvicidal potential of metabolites and spore extracts of Aspergillus fumigatus against Culex mosquito. The fungal spore concentrations were ascertained after 5 days of fungal culture by optical density measurements. An equal amount of methanol and ethyl acetate was used to extract metabolites at four different test concentrations (10, 20, 30, and 40 mg/mL). The chemical constituents of the extracted metabolites were characterized using GC-MS and FTIR analyses. The protocols enshrined by WHO (2005) were followed in conducting the larvicidal bioassay, whereas the lethal concentrations (LC50 and LC90) were calculated by Probit analysis. The highest mortality rate (100%) was recorded at the highest concentration of metabolites extract (40 mg/mL) of Aspergillus fumigatus. Complete (100%) was recorded at spores concentration of 4.5× 108 CFU/ml. The major bioactive compounds revealed by the GC-MS analysis include 9-eicosene, (E)-, 1-octadecene, 3-eicosene, (E)-, oleic acid, 1-nonadecene, cis-vaccenic acid, octadec-9-enoic acid, andsqualene. The outcomes of this study showed that Aspergillus fumigatus metabolites and spores extract have the potential to control mosquito vectors. Hence, there is a need for large-scale production of bioactive components, as revealed by GC-MS analysis.

Publisher

Umaru Musa YarAdua University Katsina NG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3