IN-SILICO SCREENING OF PHYTOCHEMICAL COMPOUNDS IN CAESALPINIA BONDUCELLA L. SEEDS AGAINST THE GENE TARGETS OF OVARIAN STEROIDOGENESIS PATHWAY

Author:

Kandasamy Veerapandiyan,Sathish Sruthy,Madhavan Thirumurthy,Usha Balasundaram

Abstract

Polycystic ovary syndrome (PCOS) is the most common gynaecological disorder among reproductive-age women. Impaired metabolism of androgens and estrogens is one of the leading causes of PCOS. In India, medicinal herbs are being explored for their anti-androgenic and anti-estrogenic properties. In this study, we have screened the seed extracts of the herbal plant, Caesalpinia bonducella for potent inhibitors of estrogen and testosterone biosynthesis and assimilation. Methanol extract of C. bonducella seed kernels were subjected to gas chromatography - mass spectrometry (GC-MS) to identify the phytochemical constituents. Out of forty-three phytochemical compounds identified from the extract, eight compounds were selected based on Lipinski's rule of five for molecular docking. The selected phytochemical compounds were docked against specific targets of ovarian steroidogenesis pathway; human aromatase (CYP19A1), human 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1), human androgen receptor and estrogen receptor α. Further, the nature of these compounds was validated using density functional theory (DFT) calculations and ADME/T studies. As per the molecular docking output, compounds 33, 35, 38, 40, and 43 exhibited higher binding affinities against the four selected targets. Phytochemical compounds were optimized using Gaussian 16 with the B3LYP function and the 6-31G(d, p) basis set and were correlated with docking results. ADME/T helps in identifying the potential drug candidates from a pool of drugs. Five phytochemical compounds, 33, 35, 38, 40, and 43 were found to have the ability to bind and inhibit appropriate targets in the ovarian steroidogenesis pathway. Hence, these compounds can be further characterized in vitro and in vivo for alleviating PCOS.

Publisher

Slovak University of Agriculture in Nitra

Subject

Molecular Biology,Microbiology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3