METHODS OF GENETIC TRANSFORMATION: MAJOR EMPHASIS TO CROP PLANTS

Author:

Shruti ,TRIPATHI AYUSHIORCID,SHUKLA SUSMITAORCID

Abstract

Advancements in gene transfer technology have indeed opened up exciting possibilities for more effectively manipulating the genetic makeup of live organisms, ranging from microorganisms to plants and animals. Direct and indirect transformations are the two basic types of gene transfer techniques. Indirect method comprises Agrobacterium mediated method as it involves intermediate host between gene of interest and target and this method is most opted one out of all present. Direct gene transformation methods, on the other hand, do not involve the use of an intermediate host organism. Instead, they rely on physical means to transfer genes between cells. Biolistic transformation uses high-velocity particles to deliver DNA into target cells, while microinjection and macroinjection involve the direct injection of DNA into cells. Protoplast fusion combines the genetic material of two different cells by fusing their protoplasts. Natural methods for gene transfer encompass mechanisms that occur naturally in various organism, includes transposition, conjugation, phage and retroviral transductions and bacterial transformation. Chemical techniques utilize chemical agents to facilitate gene transfer, such as calcium phosphate-mediated transformation, polyethylene glycol (PEG)-mediated transformation, DEAE (Diethylethanolamine)-Dextran-mediated transformation. Genes can be also being transferred using electrical techniques such as electroporation and electrofusion.  Crop improvement and trait improvement are now being hastened by the fast-rising number of sequenced plant genomes, information from functional genomics data to understand gene function, innovative gene cloning, and tissue culture techniques. Despite being indispensable, its progress is still hindered by the fact that many plant species and agricultural genotypes exhibit low transformability or are resistant to established tissue culture and regeneration conditions. Here, we review the techniques employed in plant transformation and provide a concise overview of their evolution in agricultural crops, from their first inception to present time.  

Publisher

Slovak University of Agriculture in Nitra

Subject

Molecular Biology,Microbiology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3