Trainable watershed-based model for cornea endothelial cell segmentation

Author:

Sami Ahmed Saifullah1,Rahim Mohd Shafry Mohd2

Affiliation:

1. Faculty of Engineering, School of Computing, University Technology Malaysia , Utm Skudai , 813110 Johor , Malaysia

2. Faculty Engineering, School of Computing, Media and Games Innovation Centre of Excellence (MaGIC-X) UTM-IRDA Digital Media Centre, Institute of Human-Centred (iHumEn) T03, Level 1, University-Industry Research Laboratory (UIRL), Universiti Teknologi Malaysia , 81310 UTM Skudai , Johor , Malaysia

Abstract

Abstract Segmentation of the medical image plays a significant role when it comes to diagnosis using computer aided system. This article focuses on the human corneal endothelium’s health, which is one of the filed research interests, especially in the human cornea. Various pathological environments fasten the extermination of the endothelial cells, which in turn decreases the cell density in an abnormal manner. Dead cells worsen the hexagonal design. The mutilated endothelial cells can no longer revive back and that gives room for neighbouring cells to migrate and expand so that they can fill in the space. The latter results in cell elongation that is unpredictable as well as increase in size and thinning. Cell density and shape are therefore considered major parameters when it comes to explaining the health condition attributed to corneal endothelium. In this study, medical feature extraction was obtained depending on the segmentation of the endothelial cell boundary, and the task of segmentation of such objects especially the thin, transparent, and unclear cell boundary is considered challenging due to the nature of the image capture during endothelium layer examination by ophthalmologists using confocal or specular microscopy. The resulting image suffers from various issues that affect the quality of the image. Low quality is due to non-uniformity of illumination and the presence of a lot of noise and artefacts resulting from high amounts of distortion, and most of these limitations are present because of the nature of the imaging modality. Usually, images contain certain kind of noise and also continuous shadow. Furthermore, the cells are separated by poor border, thereby leading to great difficulty in the segmentation of the images. The irregular shape of cell and also the contrast of such images seem to be low as they possess blurry boundaries with diverse objects existing in addition to the lack of homogeneity. The main aim of the study is to propose and develop a totally automatic, robust, and real-time model for the segmentation of endothelial cells of the human cornea obtained by in vivo microscopy and computation of different clinical features of endothelial cells. To achieve the aim of this study a new scheme of image enhancement was proposed such as the Contrast-Limited Adaptive Histogram Equalisation (CLAHE) technique to enhance contrast. After that, a new image denoising technique called Wavelet Transform Filter and Butterworth Bandpass for Segmentation is used. Subsequently, brightness level correction is applied by using the moving average filter and the CLAHE to reduce the effects of the non-uniform image lighting produced as a result of the previous step. The main aim of this article is the segmentation of endothelial cells, which involves precise detection of the endothelial contours. So a new segmentation model was proposed such that the shape of the cells will be extracted, and the contours were highlighted. This stage is followed by clinical feature extraction and uses the features for diagnosis. In this stage, several relevant clinical features such as pleomorphism mean cell perimeter, mean cell density, mean cell area, and polymegathism are extracted. The role of these clinical features is crucial for the early detection of corneal pathologies as well as the evaluation of the health of the corneal endothelium layer. The findings of this study were promising.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3