Virtual transition states

Author:

Williams Ian H.1ORCID

Affiliation:

1. Department of Chemistry , 1555 University of Bath , Bath , BA2 7AY , UK

Abstract

Abstract Many organic reaction mechanisms are complex and may involve both multiple steps in series and multiple pathways in parallel. Consequently, for many reactions occurring in condensed media (including enzyme-catalyzed reactions) there is no single rate-determining step associated with a unique transition state (TS): in general, any ‘transition-state structure’ derived from experimental kinetics investigations of a complex mechanism is an average corresponding to a virtual TS. Computational simulation is now capable of yielding valuable insight, complementary to experiment, for minima and saddle points on potential-energy surfaces, corresponding to intermediates and TSs on Gibbs-energy surfaces for complex reactions with multiple TSs in parallel or in series. For a reaction with multiple steps in series, the apparent Gibbs energy of activation (corresponding with a virtual TS) is a sum of terms, one for each contributing real TS j ; the kinetic significance w j of each is given by exp(Δ G j /RT)/exp(Δ G app/RT). An analogous expression applies to the kinetics of reaction steps in parallel, except that each Gibbs energy is preceded by a minus sign, and the contribution w i of each real TS to Δ G app is its Boltzmann weighting, and the mole fraction of the lowest-energy reactant conformer must be factored in. Examples of both types of reaction are discussed to illustrate the concept of the virtual TS.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3