Computational analysis of reconstructing current and sag of three-phase overhead line based on the TMR sensor array

Author:

Si Wenrong1,Shou Yiru1,Ju Dengfeng2,Deng Hui2,Qian Sen2,Gu Yingjie3,Yang Jian3

Affiliation:

1. State Grid Shanghai Municipal Electrical Power Company , Shanghai 200122 , China

2. Global Energy Interconnection Research Institute Co., Ltd. , Beijing 102209 , China

3. MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an Jiaotong University , Xi’an 710049 , China

Abstract

Abstract The development of overhead lines has met the electricity demand of the rapidly developing society. However, the large-scale installation of overhead lines and the natural environmental differences in different regions increase the complexity of the real-time management of the lines. To improve the efficiency of line management, this article constructs a theoretical and simplified electromagnetic field model of 500 kV three-phase overhead lines and studies the method of monitoring the current-sag state of the lines based on analyzing the distribution of magnetic field intensity under the three-phase overhead lines. Moreover, the placement of the tunneling magnetoresistance (TMR) sensor array was analyzed, and the current and sag reconstruction algorithm of the line was further proposed. The calculation results show that the simplified magnetic field model is accurate in most areas under the overhead line. The comparison of condition number and sensor position sensitivity value on sensor placement evaluation shows that the sensor position sensitivity value is more comprehensive, and it is recommended to use dual-axis TMR magnetic sensors. The relative error of the line sag calculated by the proposed TMR sensor array and algorithm is less than 3% and 4% for balanced and unbalanced three-phase line currents, respectively.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3