Optimization analysis of an endoreversible quantum heat engine with efficient power function

Author:

Kaur Kirandeep1ORCID,Jain Anmol2,Singh Love Sahajbir2,Singla Rakesh3,Rebari Shishram3

Affiliation:

1. Department of Physical Sciences , Indian Institute of Science Education and Research Mohali , Sector 81, S.A.S. Nagar , Manauli PO 140306 , Punjab , India

2. Department of IT , Dr B R Ambedkar National Institute of Technology Jalandhar , Jalandhar , Punjab , 144027 , India

3. Department of Physics , Dr B R Ambedkar National Institute of Technology Jalandhar , Jalandhar , Punjab , 144027 , India

Abstract

Abstract We study the optimal performance of an endoreversible quantum dot heat engine, in which the heat transfer between the system and baths is mediated by qubits, operating under the conditions of a trade-off objective function known as the maximum efficient power function defined by the product of power and efficiency of the engine. First, we numerically study the optimization of the efficient power function for the engine under consideration. Then, we obtain some analytic results by applying a high-temperature limit and compare the performance of the engine at maximum efficient power function to the engine operating in the maximum power regime. We find that the engine operating at maximum efficient power function produces at least 88.89 % of the maximum power output while at the same time reducing the power loss due to entropy production by a considerable amount. We conclude by studying the stochastic simulations of the efficiency of the engine in maximum power and maximum efficient power regime. We find that the engine operating at maximum power is subjected to fewer power fluctuations as compared to the one operating at maximum efficient power function.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3