Acoustic properties of ABS and PLA parts produced by additive manufacturing using different printing parameters

Author:

Koç Osman Oğuzhan1,Meram Ahmet2,Çetin Mehmet Emin3ORCID,Öztürk Sinem4

Affiliation:

1. Department of Mechanical Engineering , Faculty of Engineering , Necmettin Erbakan University , Konya , Türkiye

2. Department of Mechatronics Engineering , Faculty of Engineering and Natural Sciences , KTO Karatay University , Konya , Türkiye

3. Department of Astronautical Engineering , Faculty of Aviation and Space Sciences , Necmettin Erbakan University , Konya , Türkiye

4. Faculty of Mechanical Engineering , Istanbul Technical University , Istanbul , 34437, Türkiye

Abstract

Abstract This study investigates the effect of printing parameters on the acoustic performance of specimens produced using 3D printing technology. The specimens were fabricated with square and hexagonal cell shapes with 10, 20, 30, and 50 % infill ratios from acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) materials. The sound absorption coefficient and sound transmission loss results of the samples were measured with an impedance tube at 1/3 octave band values in the range of 500–6400 Hz. The highest sound absorption coefficient results were determined for cylindrical samples with a square internal structure made of ABS material with a 50 % infill ratio in the frequency range of 2500–3500 Hz. The sound transmission loss values of the samples vary between approximately 13 and 58 dB at 1/3 octave band values in the range of 500 and 6300 Hz. The highest sound transmission loss values were determined in the sample produced of PLA with a square cell shape at a 30 % infill ratio. It was concluded that different geometric shapes, materials, and infill ratios affect the acoustic performance of parts produced by 3D printing technology.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3