Affiliation:
1. MiViA GmbH , Halsbrücker Str. 34 , Freiberg Germany
Abstract
Abstract
Analysing the microstructure is an essential part of quality control in many steel manufacturing and processing operations. In this work, a promising method for autonomous analysis of microstructures in low-alloy steels based on artificial intelligence image analysis is presented. This study focuses on the classification of different microstructure components in metallographic images of steel microstructures using a Deep Convolutional Neural Network (DCNN) model. Since the accuracy of the model strongly depends on the size of the data set, a data set consisting of two million optical microscopy images was created to ensure the presence of different microstructure components and their combinations for training the system. The Jominy test was performed to verify the accuracy and capability of the microstructure analysis software. The AI makes it possible to analyse large amounts of image data with high precision and at the same time with less effort than conventional methods of microstructure components analysis.
Reference16 articles.
1. Girault, E.; Jacques, P.; Harlet, Ph.; Mols, K.; Van Humbeeck, J.; Aernoudt, E.; Delannay, F.: Metallographic Methods for Revealing the Multiphase Microstructure of TRIP-Assisted Steels. Mater. Charact. 40 (1998) 2, pp. 111−118, DOI:10.1016/S1044-5803(97)00154-X
2. Korpała, G.; Prahl, U.: Image Segmentation Algorithm for Steel Microstructure Analyses. Materials data for smart forming technologies, Proc. Meform 2021, 18.−19.03.2021, Freiberg, Germany, Technische Universität Bergakademie Freiberg, Institut für Metallformung, Freiberg, 2021, pp. 41–44
3. Schiebold, K.: Zerstörende Werkstoffprüfung − Metallografische Werkstoffprüfung und Dokumentation der Prüfergebnisse. Springer Vieweg, Berlin, 2018, DOI:10.1007/978-3-662-57803-2
4. Kang, J.-Y.; Park, S.-J.; Suh, D. W.; Han, H. N.: Estimation of phase fraction in dual phase steel using microscopic charaterizations and dilatometric. Mater. Charact. 84 (2013), pp. 205−215, DOI:10.1016/j.matchar.2013.08.002
5. Borrajo-Pelaez, R.; Hedström, P.: Recent Developments of Crystallographic Analysis Methods in the Scanning Electron Microscope for Applications in Metallurgy. Crit. Rev. Sol. State 43 (2017) 6, pp. 455−474, DOI:10.1080/10408436.2017.1370576, open access