Cdk5 activation promotes Cos-7 cells transition towards neuronal-like cells

Author:

Bao Li12,Lan Xiao-Mei34,Zhang Guo-Qing12,Bao Xi12,Li Bo13,Ma Dan-Na13,Luo Hong-Yan12,Cao Shi-Lu12,Liu Shun-Yao12,Jing E13,Zhang Jian-Zhong1,Zheng Ya-Li2

Affiliation:

1. Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University , Yinchuan 750004 , P.R. China

2. Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan , Yinchuan 750002 , P.R. China

3. Graduate School of Xi’an Jiaotong University , Xi’an 710061 , P.R. China

4. Department of Geriatrics, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan , Yinchuan 750002 , P.R. China

Abstract

Abstract Objectives Cyclin-dependent kinase 5 (Cdk5) activity is specifically active in neurogenesis, and Cdk5 and neocortical neurons migration related biomarker are expressed in Cos-7 cells. However, the function of Cdk5 on the transformation of immortalized Cos-7 cells into neuronal-like cells is not clear. Methods Cdk5 kinase activity was measured by [γ-32P] ATP and p81 phosphocellulose pads based method. The expression of neuron liker markers was evaluated by immunofluorescence, real-time PCR, Western blot, and Elisa. Results P35 overexpression upregulated Cdk5 kinase activity in Cos-7 cells. p35 mediated Cdk5 expression promoted the generation of nerite-like outgrowth. Compared with the empty vector, p35-induced Cdk5 activation resulted in time-dependent increase in neuron-like marker, including Tau, NF-H, NF-H&M, and TuJ1. Tau-5 and NF-M exhibited increased expression at 48 h while TuJ1 was only detectable after 96 h in p35 expressed Cos-7 cells. Additionally, the neural cell biomarkers exhibited well colocation with p35 proteins. Next-generation RNA sequence showed that p35 overexpression significantly upregulated the level of nerve growth factor (NGF). Gene set enrichment analysis showed significant enrichment of multiple neuron development pathways and increased NGF expression after p35 overexpression. Conclusion p35-mediated Cdk5 activation promotes the transformation of immortalized Cos-7 cells into neuronal-like cells by upregulating NGF level.

Publisher

Walter de Gruyter GmbH

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3