Enhancement of chondrogenic differentiation in ATDC5 cells using GFOGER-modified peptide nanofiber scaffold

Author:

Yaylacı Seher1ORCID

Affiliation:

1. Faculty of Medicine , Lokman Hekim University , Ankara , Türkiye

Abstract

Abstract Objectives Owing to its avascular nature, cartilage tissue has a restricted capacity for regeneration. These structural features make it difficult for a fully functional tissue to regenerate after damage. Therefore, studies aiming at cartilage tissue regeneration are getting quite interesting. In this study, we employed a novel approach to induce chondrogenic differentiation using a collagen mimetic peptide amphihile (PA) nanofiber. The nanofiber comprised a specific peptide sequence – glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER), corresponding to the α1 (I) collagen chain. This sequence was selected for its ability to mimic the structure and function of natural collagen in the extracellular matrix (ECM). This specific peptide sequence is expected to enhance the chondrogenic differentiation process by providing a more efficient and effective method for tissue engineering applications. Methods ATDC5 cells were cultured on the synthetic scaffold of collagen-mimicking PA nanofibers, facilitating adhesion, division, and chondrogenic cell differentiation. Results In our study, ATDC5 cells cultured on collagen mimetic peptide nanofiber expressed chondrogenic marker proteins, namely Collagen II and Sox9, significantly high at the 5th and 10th days compared to cells cultured on TCP in the absence of insulin as inducer. Conclusions According to our results, the collagen mimetic peptide-based scaffold supports cell growth and differentiation by mimicking the natural cell matrix.

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry (medical),Clinical Biochemistry,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3