Optimization and design of a new column sequencing for crude oil distillation at Basrah refinery

Author:

Hussain Muntadher Sallah1,Fares Mohammad N.1,Taher Mohammad A.2

Affiliation:

1. College of Engineering, Basra University , Basra , Iraq

2. College of Oil and Gas Engineering, Basra University for Oil and Gas , Basra , Iraq

Abstract

Abstract The utilization of distillation stands as a predominant separation method within the chemical and petroleum industries, prominently influencing operational costs and environmental impact due to energy consumption. Enhancing energy efficiency holds paramount significance in elevating the sustainability and overall efficacy of distillation operations. Within this study, we introduce an innovative approach termed “marginal vapor flow (MVF)” to optimize the distillation column sequence for crude oil processing, focusing on the third distillation unit at the Basra Refinery. This research evaluates diverse column designs through streamlined simulations using Aspen HYSYS V11 software. The study determines total energy consumption as a benchmark, comparing it against the optimal sequence recommended by the MVF methodology. A novel application of the downward reduction equation to crude oil guides the selection of light and heavy components. Key findings from this comprehensive analysis showcase the potency of combining MVF with Aspen HYSYS for optimizing crude oil distillation column sequences. Aspen HYSYS, a widely recognized process simulation tool, accurately represents distillation processes. Simultaneously, MVF facilitates the determination of optimal column sequences based on marginal vapor flow rates. Notably, the results reveal that within the studied sequences, sequence 9 exhibits the lowest total MVF of (1393.4 kmol/h), signifying its optimality, while sequence 2 displays the highest total MVF of (4827.3 kmol/h), representing the least favorable scenario. Simulation of the optimal sequence derived through the MVF approach exhibits a remarkable 35% reduction in energy consumption compared to real-life operations. Conversely, simulating the least favorable sequence demonstrates a substantial 32% increase in energy consumption compared to actual operations. This study underscores the pivotal role of MVF methodology in optimizing distillation sequences for enhanced energy efficiency, providing actionable insights for refining operations to significantly reduce energy consumption and operational costs while advancing sustainability goals.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3