Numerical study of Ti/Al/Mg three-layer plates on the interface behavior in explosive welding

Author:

Liu Ruifeng1,Wang Wenxian2,Zhang Tingting1,Yuan Xiaodan1

Affiliation:

1. College of Materials Science and Engineering, Taiyuan University of Technology; Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, Shanxi Province 030024, China

2. College of Materials Science and Engineering, Taiyuan University of Technology; Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, 79 West Yingze Street, Taiyuan, Shanxi Province 030024, China

Abstract

AbstractIn this study, a finite element model of the explosive welding process of three-layer plates composed of Ti/Al/Mg was established, and the interfacial behaviors of three-layer plates were researched. We investigated the influences that affect the quality of explosive bonding and explored the influence factors of variable physical parameters in the simulation. The finite difference engineering package AUTODYN with the smoothed particle hydrodynamics method has been used to model the collision in this work. The von Mises strength model was used to describe the behavior of Ti/Al/Mg composite plates. Wave morphology on the Al/Mg interface and straight morphology on the Ti/Al interface were produced in this study; meanwhile, jet phenomenon occurred obviously in the simulation process. The contours of velocity, pressure, shear stress, and effective plastic strain of Ti/Al/Mg were also discussed. The result of X-direction velocity showed a delay in time and location of collision point between the Ti/Al and the Al/Mg interface. The detonation point was the minimum pressure, and the collision point was the maximum pressure compared with other sections. The value of effective plastic strain must exceed a threshold to obtain a good bonding, and the shear stress was of opposite sign in the simulation.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3