Interleukin-17A influences the vulnerability rather than the size of established atherosclerotic plaques in apolipoprotein E-deficient mice

Author:

Wang Bo1,Hou Xitan1,Sun Yaning1,Lei Chao1,Yang Sha1,Zhu Yao1,Jiang Yingming1,Song Li2

Affiliation:

1. Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University , Jining City , 272067, Shandong Province , China

2. Department of Neurology, Affiliated Hospital of Jining Medical University , Jining City , 272067, Shandong Province , China

Abstract

Abstract Interleukin (IL)-17A plays a role in the development of atherosclerotic plaques; however, the mechanism remains unclear. In this study, apolipoprotein E-deficient (ApoE–/–) mice were fed a high-fat diet to induce atherosclerosis, followed by the treatment with exogenous recombinant IL-17A or the neutralizing antibody to confirm the impact of IL-17A on the established atherosclerotic plaques. We found that both the stimulation of IL-17A and blockage of endogenous IL-17 via antibody did not affect the size of the established plaques. However, IL-17A significantly increased the vulnerability of plaques characterized by the accumulation of lipids and T cells with a concurrent decrease in the number of smooth muscle cells. In addition, the blockage by IL-17 neutralizing antibody attenuated plaque vulnerability. Furthermore, we found that although IL-17A did not affect the efferocytosis of macrophages to apoptotic cells, it promoted the apoptosis of macrophages in the presence of oxidized low-density lipoprotein in vitro. Also, IL-17A upregulated chemokines MCP-1 and CXCL-10 expression in the plaques. Our data indicated that IL-17A controlled both SMC and macrophage accumulation and the apoptosis within the plaque, which may further weaken the aorta wall. This study suggests that IL-17A may be a potential therapeutic target for cardiovascular diseases.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3