Stochastic gradient descent optimisation for convolutional neural network for medical image segmentation

Author:

Nagendram Sanam1,Singh Arunendra2,Harish Babu Gade3,Joshi Rahul4,Pande Sandeep Dwarkanath5,Ahammad S. K. Hasane6,Dhabliya Dharmesh7,Bisht Aadarsh8

Affiliation:

1. Department of Artificial Intelligence, KKR & KSR Institute of Technology and Sciences , Guntur , India

2. Department of Information Technology, Pranveer Singh Institute of Technology , Kanpur , 209305, Uttar Pradesh , India

3. Department of E.C.E, CVR College of Engineering , Hyderabad , India

4. CSE Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University) , Pune , India

5. MIT, Academy of Engineering , Alandi , Pune , India

6. Department of E.C.E., Koneru Lakshmaiah Education Foundation , Vaddeswaram , 522302 , India

7. Department of Information Technology, Vishwakarma Institute of Information Technology , Pune , India

8. University Institute of Engineering, Chandigarh University , Mohali , India

Abstract

Abstract In accordance with the inability of various hair artefacts subjected to dermoscopic medical images, undergoing illumination challenges that include chest-Xray featuring conditions of imaging acquisi-tion situations built with clinical segmentation. The study proposed a novel deep-convolutional neural network (CNN)-integrated methodology for applying medical image segmentation upon chest-Xray and dermoscopic clinical images. The study develops a novel technique of segmenting medical images merged with CNNs with an architectural comparison that incorporates neural networks of U-net and fully convolutional networks (FCN) schemas with loss functions associated with Jaccard distance and Binary-cross entropy under optimised stochastic gradient descent + Nesterov practices. Digital image over clinical approach significantly built the diagnosis and determination of the best treatment for a patient’s condition. Even though medical digital images are subjected to varied components clarified with the effect of noise, quality, disturbance, and precision depending on the enhanced version of images segmented with the optimised process. Ultimately, the threshold technique has been employed for the output reached under the pre- and post-processing stages to contrast the image technically being developed. The data source applied is well-known in PH2 Database for Melanoma lesion segmentation and chest X-ray images since it has variations in hair artefacts and illumination. Experiment outcomes outperform other U-net and FCN architectures of CNNs. The predictions produced from the model on test images were post-processed using the threshold technique to remove the blurry boundaries around the predicted lesions. Experimental results proved that the present model has better efficiency than the existing one, such as U-net and FCN, based on the image segmented in terms of sensitivity = 0.9913, accuracy = 0.9883, and dice coefficient = 0.0246.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3