Bmi-1 directly upregulates glucose transporter 1 in human gastric adenocarcinoma

Author:

Guo Ying1,Zhou Guangyu1,Ma Qingjie2,Zhang Li3,Chen Jiwei1

Affiliation:

1. Department of Nephrology, China-Japan Union Hospital, Jilin University, Changchun , Jilin 130033 , China

2. Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University , 126 Xiantai St., Changchun , Jilin 130033 , China

3. Department of Neurology, China-Japan Union Hospital, Jilin University , 126 Xiantai St., Changchun , Jilin 130033 , China

Abstract

Abstract This study aimed to investigate whether and how Moloney murine leukemia virus integration site 1 (Bmi-1) plays a role in the regulation of glucose transporter 1 (GLUT1) in gastric adenocarcinoma (GAC). GAC and matched noncancerous tissues were obtained from GAC patients who underwent surgical treatment at the China-Japan Union Hospital, Jilin University (Changchun, Jilin, China). The human GAC cell line AGS and the gastric epithelial cell line GES-1 were used for in vitro studies. BALB/c nude mice were used for in vivo studies. The Bmi-1 and GLUT1 protein levels were significantly greater in human tissues from GAC patients and AGS cells in comparison with controls. Silencing of Bmi-1 resulted in significant decrease in glucose uptake, lactate levels, and GLUT1 expression. In vivo 18F-deoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) imaging studies indicated that the nude mice bearing xenografts of AGS cells treated with Bmi-1-specific small interfering RNA (siRNA) had a significantly lower maximum standardized uptake value (SUVmax) in comparison with the control mice. Thus, Bmi-1 directly upregulates GLUT1 gene expression, through which it is involved in enhancing glucose uptake in GAC. The results also provide scientific evidence for 18F-FDG PET/CT imaging to evaluate Bmi-1 and glucose uptake in GAC.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3