Silencing TLR4 using an ultrasound-targeted microbubble destruction-based shRNA system reduces ischemia-induced seizures in hyperglycemic rats

Author:

Chen Jia1,Huang Fami2,Fang Xiaobo1,Li Siying1,Liang Yanling13ORCID

Affiliation:

1. Department of Neurology, The Third Affiliated Hospital of Guangzhou Medical University , 63 Duobao Road, Liwan District , Guangzhou , 510150 , China

2. Department of Intensive Care Unit, The Sixth Affiliated Hospital of Guangzhou Medical University , Qingyuan , 511500 , China

3. Key Laboratory for Major Obstetric Diseases of Guangdong Province , Guangzhou , 510150 , China

Abstract

Abstract The toll-like receptor 4 (TLR4) pathway is involved in seizures. We investigated whether ultrasound-targeted microbubble destruction (UTMD)-mediated delivery of short hairpin RNA (shRNA) targeting the TLR4 gene (shRNA-TLR4) can reduce ischemia-induced seizures in rats with hyperglycemia. A total of 100 male Wistar rats were randomly assigned to five groups: (1) Sham; (2) normal saline (NS); (3) shRNA-TLR4, where rats were injected with shRNA-TLR4; (4) shRNA-TLR4 + US, where rats were injected with shRNA-TLR4 followed by ultrasound (US) irradiation; and (5) shRNA-TLR4 + microbubbles (MBs) + US, where rats were injected with shRNA-TLR4 mixed with MBs followed by US irradiation. Western blot and immunohistochemical staining were used to measure TLR4-positive cells. Half of the rats in the NS group developed tonic-clonic seizures, and TLR4 expression in the CA3 region of the hippocampus was increased in these rats. In addition, the NS group showed an increased number of TLR4-positive cells compared with the Sham group, while there was a decreased number of TLR4-positive cells in the shRNA, shRNA + US, and shRNA + MBs + US groups. Our findings indicate that the TLR4 pathway is involved in the pathogenesis of ischemia-induced seizures in hyperglycemic rats and that UTMD technology may be a promising strategy to treat brain diseases.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3