Affiliation:
1. Max-Planck-Institut für Physik und Astrophysik, Institut für extraterrestrische Physik, Garching, Germany
Abstract
The relevant processes in shock wave ionization of a solid Fe micrometeorite impinging on a W target are analyzed. The internal energy behind the shock wave in shown to depend on impact velocity w, target and meteorite density in a simple analytical form. For low impact velocities (w<7 km sec-1) the ions generated by the shock are mostly due to surface ionization. For high impact velocities [w>20 km sec-1) the number of ions can satisfactorily be explained by isentropic expansion of the shocked material to a particle density of n ≈ 1020 cm-3 whereupon the rate processes in the expanding ion cloudlet govern the residual ionization. In velocity regions where laboratory measurements can be carried out, the agreement between theory and experiment confirms the assumptions made.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献