Performance and energy efficiency enhancement of existing optical communication systems by incorporating resource allocation on demand technique in FiWi networks

Author:

Raman Nitin Kali1,Saini Himanshi1

Affiliation:

1. Department of Electronics and Communication Engineering , 232469 Deenbandhu Chhotu Ram University of Science and Technology , Murthal , Sonepat , Haryana , India

Abstract

Abstract Fiber-wireless (FiWi) networks have begun to be fully integrated into contemporary optical access network systems as a result of utilizing the combined advantages of wired and wireless techniques. Passive optical networks (PON) are heavy energy consumers and one of the main contributors to greenhouse gas emissions (GHG) that are a result of climate change. These systems also present economic challenges. In this work, three different FiWi systems are presented such as (i) even/odd active transmitters with only free space optical (FSO) based optical network units (ONUs)/with dual channel option such as distribution fiber (DF)/FSO supported ONUs, (ii) a novel resource allocation on demand (RAoD) incorporated bidirectional FiWi system supporting DF/FSO based ONUs and four wave mixing (FWM) generated upstream wavelengths and (iii) transmitter diversity enabled 5G supported FiWi system supporting bidirectional communication. It is observed that the energy efficiency of 26.04 % is obtained in even/odd active transmitter and only FSO supported ONUs and under the harsh weather conditions, by adopting DF channel instead of FSO, 30 % energy efficiency further added. However, in novel RAoD technique, energy efficiencies for optical distribution networks (ODN1), ODN2, ODN3, and ODN4 are 48.52 %, 46.4 %, 36.96 %, and 44.31 %. Further, DF option in channel selection improve 30 % more energy saving. In performance enhanced transmitter diversity employed system, at 60 km reduction in bit error rate (BER) are 25 % for ODN1, 5.88 % for ODN2, 20 % for ODN3, and 12.5 % for ODN3.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3