The universe of Hsp90

Author:

Stankiewicz Marta1,Mayer Matthias P.1

Affiliation:

1. 1Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany

Abstract

AbstractMolecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Among the ATP-dependent chaperones, heat shock proteins (Hsp90) proteins play a special role. While Hsp90s can interact with unfolded and misfolded proteins, their main (and in eukaryotic cells essential) function appears to involve interactions with a limited number of protein clients at late steps of maturation or in “alter-native” conformations for regulating their stability and activity. Because Hsp90 clients are hubs of diverse signaling networks and participate in nearly every cellular function, Hsp90s interconnect many regulatory circuits and link them to environmental impacts. The availability and activity of Hsp90 may thus influence complex physiological and pathophysiological processes, such as differentiation, development, aging, cancer, neurodegeneration, and infectious diseases. Furthermore, through homeostatic effects on differentiation and development, Hsp90s act as capacitors of phenotypic evolution. In this review, we discuss recent insights in the structure and chaperone cycle of Hsp90s, the mechanisms underlying Hsp90 binding to clients, and potential reasons why client proteins specifically require the assistance of Hsp90s. Moreover, the current views on Hsp90-cochaperone interactions and regulation of Hsp90 proteins via posttranslational modifications are summarized. The second half of this article is devoted to the role of Hsp90 proteins in health and disease, aging, and evolution.

Publisher

Walter de Gruyter GmbH

Subject

Cellular and Molecular Neuroscience,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3