Natural pigment indigoidine production: process design, simulation, and techno-economic assessment

Author:

Mora-Jiménez Jhared Axel1,Alvarez-Rodriguez Vanessa Andreina1,Cisneros-Hernández Sebastián1,Ramírez-Martínez Carolina1,Ordaz Alberto1

Affiliation:

1. Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias , 42547 Tecnológico de Monterrey, Campus Estado de México , Carretera Lago de Guadalupe Km 3.5, Margarita Maza de Juárez , Atizapán de Zaragoza , Estado de México , México

Abstract

Abstract Natural pigment production represents an innovative and sustainable alternative to synthetic pigments. However, its industrial production to meet the global demand for pigments poses technological and economic challenges. In this work, a process design and simulation were conducted using SuperPro Designer to produce a blue natural pigment known as indigoidine, which is in high demand as a natural alternative to synthetic blue dyes in industries. The process design included upstream, bioreaction, and downstream processing to produce 113 tons per year of dry indigoidine. For the conception and design of the bioprocess, experimental data reported in the literature, such as kinetic and stoichiometric parameters, culture media, feeding strategy, and volumetric power input, were taken into account. The economic and profitability indicators of four scenarios were assessed based on a base scenario, which involved changing the typical stirred tank reactor to an airlift reactor, decreasing indigoidine recovery, and reducing biomass production. It was estimated that the use of an airlift reactor significantly improves the profitability of the bioprocess, while a 50 % decrease in biomass concentration (less than 40 g/L) significantly affected the profitability of the process. Finally, an equilibrium production point of around 56 tons per year was determined to balance total revenues with operational costs. This is the first work that offers valuable insights into the scaling-up of natural pigment indigoidine production using bacteria.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3