Models and mechanisms of acquired antihormone resistance in breast cancer: significant clinical progress despite limitations

Author:

Sweeney Elizabeth E.,McDaniel Russell E.,Maximov Philipp Y.,Fan Ping,Jordan V. Craig

Abstract

AbstractTranslational research for the treatment and prevention of breast cancer depends upon the four Ms: models, molecules, and mechanisms in order to create medicines. The process, to target the estrogen receptor (ER) in estrogen-dependent breast cancer, has yielded significant advances in patient survivorship and the first approved medicines (tamoxifen and raloxifene) to reduce the incidence of any cancer in high- or low-risk women. This review focuses on the critical role of the few ER-positive cell lines (MCF-7, T47D, BT474, ZR-75-1) that continue to advance our understanding of the estrogen-regulated biology of breast cancer. More importantly, the model cell lines have provided an opportunity to document the development and evolution of acquired antihormone resistance. The description of this evolutionary process that occurs in micrometastatic disease during up to a decade of adjuvant therapy would not be possible in the patient. The use of the MCF-7 breast cancer cell line, in particular, has been instrumental in discovering a vulnerability of ER-positive breast cancer exhaustively treated with antihormone therapy. Physiologic estradiol acts as an apoptotic trigger to cause tumor regression. These unanticipated findings in the laboratory have translated to clinical advances in our knowledge of the paradoxical role of estrogen in the life and death of breast cancer.

Publisher

Walter de Gruyter GmbH

Subject

Endocrinology,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3