Biosynthesis of ZnO/Ag nanocomposites heterostructure for efficient photocatalytic degradation of antibiotics and synthetic dyes

Author:

Hamza Laila1,Laouini Salah Eddine23,Mohammed Hamdi Ali23,Meneceur Souhaila23,Salmi Chaima23,Alharthi Fahad4,Legmairi Souheila23,Abdullah Johar Amin Ahmed5

Affiliation:

1. Faculty of Physics , University of Science and Technology Houari Boumediene , USTHB, 32, El Alia , Algiers 16111 , Algeria

2. Department of Process Engineering, Faculty of Technology , University of El Oued , El-Oued 39000 , Algeria

3. Laboratory of Biotechnology Biomaterial and Condensed Matter, Faculty of Technology , University of El Oued , El-Oued 39000 , Algeria

4. Department of Chemistry , College of Science, King Saud University , Riyadh 11451 , Kingdom of Saudi Arabia

5. Departamento de Ingeniería Química , Universidad de Sevilla , Sevilla 41012 , Spain

Abstract

Abstract This study addresses the pressing issue of environmental pollution caused by antibiotics and synthetic dyes in aquatic ecosystems, presenting a novel approach for their efficient photocatalytic degradation. Zinc oxide (ZnO)-based nanoscale photocatalysts, including ZnO nanoparticles (NPs) and ZnO/Ag nanocomposite heterostructure (NCH), were synthesized through an innovative and eco-friendly method utilizing an extract derived from discarded lemon peels as a biogenic reducing agent. The synthesized materials were extensively characterized through UV spectrophotometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results confirmed the different morphologies of ZnO NPs and ZnO/Ag NCH, with average sizes of 20 nm and 42 nm, respectively. Notably, the ZnO NPs and ZnO/Ag NCH exhibited optical bandgap energies of 3.2 eV and 2.85 eV, respectively, signifying their potential as efficient photocatalysts. Under natural sunlight irradiation, these materials demonstrated exceptional photocatalytic activity, achieving a remarkable 98.8 % degradation rate for metronidazole and 90 % for ciprofloxacin in just 12 min. Furthermore, the ZnO NPs effectively removed 84 % of Toluidine Blue and 77 % of Congo red after 120 min, while ZnO/Ag NCH enhanced degradation rates to approximately 90.5 % for Toluidine Blue and 86 % for Congo Red. This research highlights the significant physicochemical properties and novel synthesis methods employed, positioning these sustainable nanomaterials as promising solutions for mitigating environmental pollution effectively.

Publisher

Walter de Gruyter GmbH

Reference72 articles.

1. Kurniawan, T. A., Lo, W., Liang, X., Goh, H. H., Othman, M. H. D., Chong, K. K., Chew, K. W. Remediation technologies for contaminated groundwater due to arsenic (As), mercury (Hg), and/or fluoride (F): a critical review and way forward to contribute to carbon neutrality. Sep. Purif. Technol. 2023, , 123474; https://doi.org/10.1016/j.seppur.2023.123474.

2. Sumra, A. A., Aadil, M., Ejaz, S. R., Anjum, S., Saleem, T., Zain, M., Alsafari, I. A. Biological synthesis of nanostructured ZnO as a solar-light driven photocatalyst and antimicrobial agent. Ceram. Int. 2022, 48, 14652–14661; https://doi.org/10.1016/j.ceramint.2022.01.359.

3. Shafiq, K., Aadil, M., Hassan, W., Choudhry, Q., Gul, S., Rais, A., Fattah, A. A., Mahmoud, K. H., Ansari, M. Z. Cobalt and holmium co-doped nickel ferrite nanoparticles: synthesis, characterization and photocatalytic application studies. Z Phys. Chem. 2023, 237, 1325–1344; https://doi.org/10.1515/zpch-2023-0273.

4. Khan, S., Naushad, M., Govarthanan, M., Iqbal, J., Alfadul, S. M. Emerging contaminants of high concern for the environment: current trends and future research. Environ. Res. 2022, 207, 112609; https://doi.org/10.1016/j.envres.2021.112609.

5. Zohra, R., Meneceur, S., Eddine, L. S., Bouafia, A., Mohammed, H. A., Hasan, G. G. Biosynthesis and characterization of MnO2 and Zn/Mn2O4 NPs using Ziziphus spina-Christi aqueous leaves extract: effect of decoration on photodegradation activity against various organic dyes. Inorg. Chem. Commun. 2023, 156, 111304; https://doi.org/10.1016/j.inoche.2023.111304.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3