Synthesis of BaO/NiO/rGO nanocomposite for supercapacitor application

Author:

Anisha Nallathambi1,Yuvakkumar Rathinam1ORCID,Ravi Ganesan12,Thambidurai Mariyappan3,Velauthapillai Dhayalan4

Affiliation:

1. Department of Physics , Alagappa University , Karaikudi 630003 , Tamil Nadu , India

2. Department of Physics , Chandigarh University , Mohali 140413 , Punjab , India

3. School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue, 639798 , Singapore , Singapore

4. Faculty of Engineering and Science , Western Norway University of Applied Sciences , Bergen 5063 , Norway

Abstract

Abstract Considering the global energy crisis, alternative energy resources requirement is rising gradually. In light of dwindling energy resources, we turn to renewable alternatives. Storing this energy for future utilization remains a pressing endeavor. The ideal storage device should possess intensified energy density, power density, and cyclic stability. In this study, we have synthesized metal oxide with carbon based material nanocomposite such as BaO/NiO, BaO/NiO/rGO through cost effective co-precipitation method and their comparative performance for supercapacitor application were studied. Various characterizations were taken for the above synthesized material. X-ray diffraction (XRD) study confirmed the material formation and their crystallinity of the nanocomposite. BaO has tetragonal structure which was confirmed through JCPDS card number 26-0178 and NiO has rhombohedral structure which was confirmed through JCPDS card number 89-7390. To study electrochemical behaviour of electrode material and its cyclic stability, cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy (EIS) studies was executed. BaO/NiO/rGO possesses 1072 F/g specific capacitance at 0.3 A/g in aqueous 1 M KOH. The electrochemical action of hybrid device was setup and it revealed 224 F/g at 0.3 A/g within the charging potential of 1.6 V. Capacitive retention of 97.6 % was achieved by asymmetric hybrid supercapacitor even after 5000 cycles at 10 A/g, this shows prepared nanocomposite exceptional cyclic stability in energy storage application.

Funder

UGC-SAP grant

DST-FIST grant

DST-PURSE grant

RUSA grant

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3