Conjugacy search problem and the Andrews–Curtis conjecture

Author:

Panteleev Dmitry1,Ushakov Alexander1

Affiliation:

1. Department of Mathematics, Stevens Institute of Technology, Hoboken, NJ, USA

Abstract

AbstractWe develop new computational methods for studying potential counterexamples to the Andrews–Curtis conjecture, in particular, Akbulut–Kurby examples {\operatorname{AK}(n)}. We devise a number of algorithms in an attempt to disprove the most interesting counterexample {\operatorname{AK}(3)}. That includes an efficient implementation of the folding procedure for pseudo-conjugacy graphs, based on the original modification of a classic disjoint-set data structure. To improve metric properties of the search space (the set of balanced presentations of the trivial group), we introduce a new transformation, called an ACM-move, that generalizes the original Andrews–Curtis transformations and discuss details of a practical implementation. To reduce growth of the search space, we introduce a strong equivalence relation on balanced presentations and study the space modulo automorphisms of the underlying free group. We prove that automorphism moves can be applied to Akbulut–Kurby presentations. The improved technique allows us to enumerate balanced presentations AC-equivalent to {\operatorname{AK}(3)} with relations of lengths up to 20 (previous record was 17).

Funder

National Science Foundation

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Computer Networks and Communications

Reference68 articles.

1. Dehn functions and l1l_{1}-norms of finite presentations;Algorithms and Classification in Combinatorial Group Theory,1992

2. Balanced presentations of the trivial group;Bull. Lond. Math. Soc.,1993

3. On the dunce hat;Topology,1964

4. Balanced presentations of the trivial group;Bull. Lond. Math. Soc.,1993

5. On Dehn’s algorithm and the conjugacy problem;Math. Ann.,1968

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3