Human islet amyloid polypeptide (hIAPP) - a curse in type II diabetes mellitus: insights from structure and toxicity studies

Author:

Bishoyi Ajit Kumar1,Roham Pratiksha H.2,Rachineni Kavitha1,Save Shreyada1,Hazari M. Asrafuddoza1,Sharma Shilpy2,Kumar Ashutosh1

Affiliation:

1. Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India

2. Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune, 411007, Maharashtra, India

Abstract

AbstractThe human islet amyloid polypeptide (hIAPP) or amylin, a neuroendocrine peptide hormone, is known to misfold and form amyloidogenic aggregates that have been observed in the pancreas of 90% subjects with Type 2 Diabetes Mellitus (T2DM). Under normal physiological conditions, hIAPP is co-stored and co-secreted with insulin; however, under chronic hyperglycemic conditions associated with T2DM, the overexpression of hIAPP occurs that has been associated with the formation of amyloid deposits; as well as the death and dysfunction of pancreatic β-islets in T2DM. Hitherto, various biophysical and structural studies have shown that during this process of aggregation, the peptide conformation changes from random structure to helix, then to β-sheet, subsequently to cross β-sheets, which finally form left-handed helical aggregates. The intermediates, formed during this process, have been shown to induce higher cytotoxicity in the β-cells by inducing cell membrane disruption, endoplasmic reticulum stress, mitochondrial dysfunction, oxidative stress, islet inflammation, and DNA damage. As a result, several research groups have attempted to target both hIAPP aggregation phenomenon and the destabilization of preformed fibrils as a therapeutic intervention for T2DM management. In this review, we have summarized structural aspects of various forms of hIAPP viz. monomer, oligomers, proto-filaments, and fibrils of hIAPP. Subsequently, cellular toxicity caused by toxic conformations of hIAPP has been elaborated upon. Finally, the need for performing structural and toxicity studies in vivo to fill in the gap between the structural and cellular aspects has been discussed.

Funder

Department of Biotechnology, Ministry of Science and Technology

Department of Science and Technology

Council of Scientific and Industrial Research

University Grants Commission

Wadhwani Research center for Bioengineering

Publisher

Walter de Gruyter GmbH

Subject

Clinical Biochemistry,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3