Apolipoprotein C-II and C-III preferably transfer to both high-density lipoprotein (HDL)2 and the larger HDL3 from very low-density lipoprotein (VLDL)

Author:

Yamazaki Azusa1,Ohkawa Ryunosuke2ORCID,Yamagata Yuka2,Horiuchi Yuna2,Lai Shao-Jui2,Kameda Takahiro2,Ichimura Naoya1,Tohda Shuji1,Tozuka Minoru3

Affiliation:

1. Clinical Laboratory , Medical Hospital, Tokyo Medical and Dental University (TMDU) , 1-5-45 Yushima , Bunkyo-ku , Tokyo 113-8510 , Japan

2. Analytical Laboratory Chemistry , Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU) , 1-5-45 Yushima , Bunkyo-ku , Tokyo 113-8510 , Japan

3. Life Science Research Center , Nagano Children’s Hospital , 3100 Toyoshina , Azumino 399-8288 , Japan

Abstract

Abstract Triglyceride hydrolysis by lipoprotein lipase (LPL), regulated by apolipoproteins C-II (apoC-II) and C-III (apoC-III), is essential for maintaining normal lipid homeostasis. During triglyceride lipolysis, the apoCs are known to be transferred from very low-density lipoprotein (VLDL) to high-density lipoprotein (HDL), but the detailed mechanisms of this transfer remain unclear. In this study, we investigated the extent of the apoC transfers and their distribution in HDL subfractions, HDL2 and HDL3. Each HDL subfraction was incubated with VLDL or biotin-labeled VLDL, and apolipoproteins and lipids in the re-isolated HDL were quantified using western blotting and high-performance liquid chromatography (HPLC). In consequence, incubation with VLDL showed the increase of net amount of apoC-II and apoC-III in the HDL. HPLC analysis revealed that the biotin-labeled apolipoproteins, including apoCs and apolipoprotein E, were preferably transferred to the larger HDL3. No effect of cholesteryl ester transfer protein inhibitor on the apoC transfers was observed. Quantification of apoCs levels in HDL2 and HDL3 from healthy subjects (n = 8) showed large individual differences between apoC-II and apoC-III levels. These results suggest that both apoC-II and apoC-III transfer disproportionately from VLDL to HDL2 and the larger HDL3, and these transfers might be involved in individual triglyceride metabolism.

Funder

Japan Society for the Promotion of Science

Hokuto Foundation for Bioscience

Publisher

Walter de Gruyter GmbH

Subject

Clinical Biochemistry,Molecular Biology,Biochemistry

Reference45 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3