Author:
Dizhbite Tatiana,Jashina Lilija,Dobele Galina,Andersone Anna,Evtuguin Dmitry,Bikovens Oskar,Telysheva Galina
Abstract
Abstract
The oxidative modification of Biolignin (BL) has been investigated to make it more suitable as an adsorbent for transition/heavy metals. BL is a by-product of a wheat straw organosolv process for the production of pulp, ethanol, and pentoses (CIMV S.A. pilot plant, Levallois Perret, France). It was subjected to oxidation by a polyoxometalate (POM) H3[PMo12O40], aiming at the increment of oxygen-containing adsorption-active sites. The POM oxidation of BL was performed under moderate conditions (1 bar, 60–90°C, and 200°C) with the co-oxidants O2 or H2O2. The resulting lignin functionality and structure was evaluated by pyrolysis-gas chromatography/mass spectrometry, solid-state 13C nuclear magnetic resonance, Fourier transform infrared, and chemical analysis. The condensation degree of BL and its COOH and aliphatic OH group contents increased significantly, whereas the polymer structure was maintained. Under optimal conditions with POM/H2O2, the sorption capacity of lignins toward Cd(II) and Pb(II) was increased threefold and twofold, respectively.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献