Data-driven modeling in metrology – A short introduction, current developments and future perspectives

Author:

Schneider Linda-Sophie1ORCID,Krauss Patrick2,Schiering Nadine3,Syben Christopher4,Schielein Richard4,Maier Andreas1

Affiliation:

1. Friedrich-Alexander-University Erlangen-Nuremberg, Chair of Pattern Recognition , Erlangen , Germany

2. University Hospital Erlangen, Neuroscience Lab , Erlangen , Germany

3. Zentrum für Messen und Kalibrieren & ANALYTIK GmbH , Bitterfeld-Wolfen , Germany

4. Development Center X-ray Technology , Fraunhofer Institute for Integrated Circuits , Fürth , Germany

Abstract

Abstract Mathematical models are vital to the field of metrology, playing a key role in the derivation of measurement results and the calculation of uncertainties from measurement data, informed by an understanding of the measurement process. These models generally represent the correlation between the quantity being measured and all other pertinent quantities. Such relationships are used to construct measurement systems that can interpret measurement data to generate conclusions and predictions about the measurement system itself. Classic models are typically analytical, built on fundamental physical principles. However, the rise of digital technology, expansive sensor networks, and high-performance computing hardware have led to a growing shift towards data-driven methodologies. This trend is especially prominent when dealing with large, intricate networked sensor systems in situations where there is limited expert understanding of the frequently changing real-world contexts. Here, we demonstrate the variety of opportunities that data-driven modeling presents, and how they have been already implemented in various real-world applications.

Funder

VDI/VDE/IT

German Ministry of Education and Research

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3