Abstract
Abstract
The purpose of the paper is to show that noncanonical operator
$$\begin{array}{}
\displaystyle
\mathcal
{L}\,y=\left(r_2(t)\left(r_1(t)y'(t)\right)'\right)'
\end{array}$$
can be easily written in essentially unique canonical form
$$\begin{array}{}
\displaystyle
\mathcal
{L}\,y = q_3(t)\left(q_2(t)\left(q_1(t)\left(q_0(t)y(t)\right)'\right)'\right)'
\end{array}$$
such that
$$\begin{array}{}
\displaystyle
\int\limits^\infty \frac{1}{q_i(s)}\,\text{d}{s}=\infty, \quad i=1,2.
\end{array}$$
The canonical representation is applied for examination of the third order noncanonical equations
$$\begin{array}{}
\displaystyle
\left(r_2(t)\left(r_1(t)y'(t)\right)'\right)'+p(t)y(\tau(t))=0.
\end{array}$$
Reference32 articles.
1. Canonical forms and principal systems for general disconjugate equations;Trans. Amer. Math. Soc.,1974
2. Principal solutions of disconjugate n-th order linear differential equations;Amer. J. Math.,1969
3. Application of Lambert W function in oscillation theory;Acta Electrotechnica et Informatica,2014
4. On the oscillation of higher-order half-linear delay differential equations;Appl. Math. Lett.,2011
5. Properties A and B of n-th order linear differential equations with deviating argument;Georgian Math. J.,1999
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献